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FEJER TYPE INEQUALITIES FOR HARMONICALLY (s,m)-CONVEX
FUNCTIONS

IMRAN ABBAS BALOCH'*, IMDAT [SCAN? AND SILVESTRU SEVER DRAGOMIR?

ABSTRACT. In this paper, a new weighted identity involving harmonically symmetric functions and
differentiable functions is established. By using the notion of harmonic symmetricity, harmonic
(s, m)-convexity, analysis and some auxiliary results, some new Fejér type integral inequalities are
presented for the class of harmonically (s, m)-convex functions.

1. INTRODUCTION

A function f : I C R — R is called convex function if f(Ax + (1 — N)y) < Af(z) + (1 = N)f(y)
for all z,y € I and A € [0,1]. There are many results associated with convex functions in the area of
inequalities, but one of them is the classical Hermite-Hadamard (see [21]) inequalities:

(1.1) 7l < < /f f()+f()7

2

for all a,b € I, with a < b. The inequalities in (1.1) hold in reversed direction if f is a concave function.
A vast literature have been produced by a number of mathematicians for convex functions but (1.1)
is considered to be the most famous inequality for convex mappings due to its usefulness and many
applications in various branches of pure and applied mathematics. The definition of classical or usual
convex functions has been generalized in a variety of ways and as a consequence many researchers have
established a number of Hermite-Hadamard type inequalities by using different generalizations of the
classical convexity, see for instance [2]-[23] and the references mentioned in these papers.

One of the generalizations of classical convexity is the harmonic (s, m)-convexity in second sense, which
unifies the notion of Harmonically convex [12] and Harmonically s-convex functions in second sense
[13] introduced by Imdat Iscan, as stated in the definition below.

Definition 1. [1] The function f: I C (0,00) — R is said to be harmonically (s, m)-convex in second
sense, where s € (0,1] and m € (0,1] if
) = £+ —=)7") <t (@) +m(1 - )" f(y)

f(mty +(1-t) x  my
Vo,y € I and t € [0, 1].

may t 1-—t

Remark 1. Note that for s = 1,harmonic (s, m)-convexity reduces to harmonic m-convezity and for
m = 1, harmonic (s, m)-convexity reduces to harmonic s-convexity in second sense (see [13]) and for
s,m =1, harmonic (s, m)-convexity reduces to ordinary harmonic convexity (see [12]).

Proposition 1. Let f : (0,00) = R be a function

a) if f is (s,m)-convex function in second sense and non-decreasing, thenf is harmonically (s, m)-
convex function in second sense.

b) if f is harmonically (s,m)-convex function in second sense and non-increasing, then f is (s,m)-
convez function in second sense.
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Remark 2. According to proposition 1, every non-decreasing (s, m)-convex function in second sense
is also harmonically (s, m)-convex function in second sense.

Example 1. (see[3]) Let 0 < s < 1 and a,b, ¢ € R, then function f : (0,00) — R defined by

r@={ b S0

bx® +c¢, x>0

is non-decreasing s-convex function in second sense for b > 0 and 0 < ¢ < a. Hence, by proposition 1,
f is harmonically (s, 1)-convex function.

Proposition 2. Let s € [0,1], m € (0,1], f : [a,mb] C (0,00) — R, be an increasing function and
g : [a,mb] — [a,mb], g(z) = a+’fn‘§f_w, a <mb. Then f is harmonically (s, m)-convex in second sense

on [a,mb] if and only if fog is (s,m)-convex in second sense on [a, mb].

The following result of the Hermite-Hadamard type holds.

Theorem 1. Let f : I C (0,00) = R be a harmonically (s, m)-convez function in second sense with
s€10,1] and m € (0,1]. If0 < a <b< oo and f € L[a,b], then one has following inequality

b b ) +mf(L b) +mf(2
[ 1)y ¢ (FOE G, S0 i)

Corollary 1. If we take m =1 in Theorem 1, then we get
b
[ 1)y L) 10
b—a ), x? s+1
Corollary 2. If we take s =1 in Theorem 1, then we get

ab  [* f(x) - fl@) +mf() ) +mf()
m/a ~z dv < min | 2 ’ 2 ]

Chen and Wu [4], established the following weighted Fejér type inequality for the harmonically
convex function as follow

Theorem 2. [4] Let f: I C R\{0} — R be a harmonically convez function and a,b € I with a <b. If
f € L(la, b)), then one has

2ab \ (" g(x) b g(2)f(x) fla)+ () [ g(x)
. — < <
(1 2) f<a+b)/a 22 dCL‘_/a 2 dz < 2 /a 2 d.’L‘,
where g : [a,b] = R is non-negative, integrable and satisfies

g(&b ab

x ) N g(a +b— x)

The main purpose of the present paper is to introduce a new notion of harmonically symmetric
functions and to establish an identity involving a harmonically symmetric function and a differentiable
function. We will prove some Fejér type inequalities by using this identity related with the second
part of the inequality given above by (1.2).We believe that our findings are novel, new and better than
those already exist and will open new ways for further research in this field.

2. MAIN RESULTS

Throughout this section, we take L(t) = % and U(t) = WM. The Beta function,
the Gamma function and the integral form of the hypergeometric function are defined as follows to be

used in the sequel of paper

I'(a)L(B)

Pt =1a+g

1
:/ 11— )P tdt, a,3 >0
0

o0
I'(a) :/ t*te7tdt, a >0
0
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and

1 1
2F1(O[,5;’7,Z) = B( / tﬁ_l(l - t)’y_ﬂ_l(l - Zt)_adta v > B >0, |Z| <1
0

677_6)

The notion of harmonically symmetric functions is defined as follows:

Definition 2. We say that a function ¢ : [a,b] C R\{0} — R is harmonically symmetric with respect
to 2ab if
a-+b

holds for all x € [a, b].

Now, we give the weighted integral equality by using which we establish our results in this article.

Lemma 1. Let f: I CR\{0} = R be a differentiable function on I° and a,b € I° with a < b and let
g : [a,b] — [0,00) be continuous positive mapping and harmonically symmetric to 22% . If ' € L([a, b)),

a+b"
then the following identity holds

fla)+ f(b) /” 9(@) /b 9(2)f()

2 z2 2

St [ ) [wior s w - woys )

Proof. Since, g : [a,b] — [0,00) is harmonically symmetric to %, then g(U(t)) = g(L(t)). Consider

r= e ()T S wwrrwm - awrram)a

& T

_ ;Ml (/LI::) gg)dx>d[f(U(t))+f(L(t>)]]

! K/LU“) 9@@) (FU®) + SO

® ¥

b—a (1

[ e+ s + ol
b —a 1
= s|v@son( [ %Gas) - 220 [

0

- b;ba Al 9<L(t>f<L<t)dt]

= |v@-son | s i P [, |

2 2ab 1'2

a atb

L LW [ o), [,

2 2

Now, we present new Fejér type inequalities for harmonically (s, m)-convex functions, which give
the weighted generalization of some of the results established in resent literature.

Theorem 3. Let f: I C (0,00) — R be a differentiable function on I° and a, % € I°, m € (0,1] with

2ab

a < b andlet g : [a,b] — [0,00) be continuous positive mapping and harmonically symmetric to P

such that f' € L(la,b]). If |f'|7 is harmonically (s, m)-convez on [a, 2] for ¢ > 1, then the following
inequality holds

‘f(a)+f(b) /l’ 9<f>dx/b9<x>f<x>dz‘

2 2 2
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— 1 bh—
< P N T @) ((22B(s + 1. 2) R (2s + 15 4 3,209
8ab e b
b—
— 2'7B(s+1,1).0F (2,5 + 1,5+ 2; 5 )+253(3+2 1).oF (2,5 +2, s+3 }|f
92-5p2 v
m2-—3 a 1—1
== B(l,5+2).oF a Ay “(a,b
b B a2 s+ 3 )+ 4 e
bfa 22-sp2 b—a
2 1).9F1(2,2 : - B(1 1).2Fi(2,1 2 —
X<{2 B(2’$+ )2 1(7 7S+37 b ) (b+a)2 (75+ )2 1(7 8+ ’b+a)
227562
- B(2,5+1).oF
(b+a)2 (,S+ )2 1(;)
1
m q
(2.1) F2B(s +2,1) B (2, SIEON

Proof. From Lemma 1 and hélder’s inequality, we get

’f(a)—;f(b) / g(x) /g()ﬂ)d <

IQ U aa] < 2ol

! agopt @
([ a-owera) ([ a-nowrroema)
(22) <( - t><L(t>>2dt)1_; (f - t)(L(t))Qlf’(L(t))lth)é}
By the harmonic (s, m)-convexity of |f/|2 on [a, 8] for ¢ > 1, we have
[ a-nworroors= [0-o(Gt—)”
"(q +t)a2~akb(1 —) EE 2ls|f'(b)|q/ol(1 —00+0 (g th)aQib(l o)
ol f (e / - 0" (G H)fib(l —p)
2.3) = {22a23(s+1,2).2F1(2,s+1,s+3; b;a) 2‘3213(s+1 D)o (2,5 + 1,5 +2; b%a)
+;—jB(s+271).2F1( 2,542,513 = V7 (b) %3(1 s+2) 2 F1(2,1, s+3 T EL
and
[ a-naapiror= 100Gt
* (q —t)aQib(l +t)b) EE 218|f/(“)|q/01(1 —00+0 (g —t)a2ib(1 o) ¢

b 1 2ab 2
_ q 1— s+1
tmy 'f( ) /0( D (e azo @

b—a 22-542p2 b—a
. = {2242 ) : — . 1 20—
(2.4) {2aB(2,s+1)2F1(272,s+3, . ) (b+a) B(1l,s +1)2F(2,1,5+ ,b+a)

22-542p2 b

B(2,s+1). 2F1(2,2,s+3 }|f |‘I+—B(s+2 1).2F1(2, 542, 5+3; )\f( )|

(b +a)?
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Moreover,

(2.5) /O(l—t)(U(t))th:/O (1— 1)

and

o) [ a-nwera= [ a-n(

A combination of (2.2), (2.3), (2.4), (2.5)

Corollary 3. Suppose the assumptions of the Theorem 3 are satisfied. If g(x)

then one has the following inequality

CH, ISCAN AND DRAGOMIR

2ab 2
G nara—op *
_,2ab 5. a+b (2ab)*
_(bfa) In( 2a ) b? — a2 = Mi(a,0)
2ab 2
A—parazop ™
~ (2ab)? 2ab 5. a+b,
_b2—a2+(bfa) In( 5 ) :== Xa2(a,b)

and (2.6) gives required result. This completes the proof. [

22 for all x € [a,b],

b b
f(a)+f(b)/ g(x)dx_/ g(x)f(x)dx
2 PR 2 " x?
< agq{/\iq(a,b)<{22B(s+1,2).2F1(2,8+1,s+3;b;a)
— 27 B(s +1,1)2F1(2,5 + 1,5 + 2; b2b )+21 B(s+2,1).0F(2,5+2, s+3 }|f
m22-5p2 a 1-1
- q q
+ (b+a)23(1 L5+ 2).0F (2, )If( )) + Xy “(a,b)
b—a 22-sp2 b—a
2 . _ .
x({Q B(2,5+1).2F(2,2,5 + 3; 7 ) (b+a)zB(17s+1).2F1(2,17s+2,b+a)
T B st DR, 2,5+ 3 L (@)
(b+a)2 y S 201(4,4,8 7b a a
m %
(2.7) +55 B(s+2,1).0F(2, ( )\ ) }

Theorem 4. Let f: I C (0,00) = R be a differentiable function on I° and a, £ € I°, m € (0,1] with

[a,b] — [0, 00

a <bandletg:

such that ' € L([a,b]). If |f'|2 is harmonically (s, m)-convex on [a,

inequality holds

) be continuous positive mapping and harmonically symmetric to

2ab

a-+b
%] for ¢ > 1, then the following

+fb) [° b b—
’f(a) : f( )/a gg)dx_/a g(x;é‘(x)dx’ < a( - a)~\|9\|m
x{({23(5+1,1).2F1(2q, — Oy 917 B(s + 1,1) .0 Fy (2,5 + 1, s—|—2 }\f
b a
PR PB4 Dy Ls 4 2 gl ()
+({23(Ls +1).2F1 (29,1, +2; b- 4y - 22q—3(b+La)2‘IB(1,s +1).0F1 (2,1, 5 +2; %)}|f’(a)|q

(2.8) +

28

ZB(s+1,1).0F1 (24,

i >|)é
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Proof. From Lemma 1 and hélder’s inequality, we get

LEES0 ngif)dw—/abwd <2t ||oo</1(1—t)q31dt>1

(2.9) x{</Ol(U(t))2q|f’(U(t))|th>(11 + (/OI(L(t))%If’(L(t))qut) }

By the harmonic (s, m)-convexity of |f/|? on [a,b] for ¢ > 1, we have

1 2| ¢ a0 ! 2ab 2q
| worroore - [ ()

2ab ! Lo [ . 2ab
T hara_op)| 4= l/'0 /0 O (T ar a—op

1
q

7'

)t

1 , Q q 1 s 2ab 2q
+mglF /O =" (T mera—ny @

(2.10)

b_
= a®{2B(s+ 1,1).2F1(2q, “)—21‘SB(s+1,1)-2F1(2qu+17s+ )

g (2 )\f( “ e

29B(1 1).0F1(2¢, 1 2:
a) ( S+)2 l(qa 7S+ b—|—a

and
2ab

| @worrwora - [ (Gt
2ab ? 10 \1q ! s 2ab 2q
T tararop)| <o l'@ /0 (T gararop) @

b 1 ab q
+ m*wﬁ'q/o (1_t)s((1—t)a2+ (1+t)b)2 dt

X

7'

(2.11)

= a2q{2B(1,s+1).2F1(2q, 1,s+2; b-a

)

)*B(1,s+1).2F1(2q,

_22(1—5
) (b +a
2q

- (e
By putting (2.10) and (2.11) in (2.9), we get desired result. O

B(s+1,1).2F1(2q,

Corollary 4. Suppose the assumptions of the Theorem 3 are satisfied. If g(x) = % for all x € [a,b],
then one has the following inequality

’ﬂa);f(b) /: 9(@), /a” 9(@)f(x)

2 z2

2

@
8

IN

b—
X{<{2B(5 +1,1).2F1(2q, a) —2'7""B(s + 1,1).2F1(2¢, 8 + 1,5 + 2; Tba)}\fl(b) e

Q=

)

b
+m22q—5(b+ a)2q3(1 s+ 1).0F1(2q,

i)

b—a b—a
2B(1 1).9F1(2g,1 2: — 92—~ _H\2p(1 1).0F1(2¢, 1 :
+<{ (,S—f— )2 I(Q7 75+a b ) (b—i—a) (78+)2 I(Qa 7S+7b+
1
m q
(212) +2B(s 4+ 1,1).0F (20, S
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Theorem 5. Let f: I C (0,00) = R be a differentiable function on I° and a, % € I°, m e (0,1] with
a <bandletg: [a,b] — [0,00) be continuous positive mapping and harmonically symmetric to =

such that ' € L(la,b)). If | |2 is harmonically (s, m)-convex on [a
inequality holds

a, ]

‘f(a)+f(b) /abgm)dx_/a”g@)f(@d ’<21 w0y,

2 2 2

(2B<s+1 1B (20, O+ 2B, s+ 1) (20,1,

mlf’(,%)lq* /(b )\ b—a

. 1). ; ——
+ 5 B(s+1,1).0F1(2¢,s + 1,5+ 2; 55 )

Sl (= @D BL s+ DR s 42500 )

b+a
Proof. From Lemma 1 and hélder’s inequality, we get

(/01(1 —~ t)qfldt>1
(2.14) (] 1(U(t))2q|f’(U(t))|th>é +( [ worasaaeae)’)

b b
HOLI0) [ o),, _ [ sl
By the power-mean inequality (a” +b" < 2'="(a +b)" for @ > 0, b > 0 and 7 < 1), we have

(2.13) +22475(

1
q

2 x> — 8ab

</01(U(t))2q|f/(U(t))th>é + (/OI(L(t))2q|f’(L(t))|th) !

(2.15) < ﬁ( [ worrwea- [ <L(t>>QQf’<L<t>>|th)q

Since, |f’|? is harmonically (s, m)-convex on [a, b] for ¢ > 1, we obtain

/O (U(6))20] /(U (1)) |2t + / (L(1))%| ' (L(t))|odt

1 s 2ab 2q

,2S\f()\ /O(Ht) ((1+t)a+(1—t)b) at
. 1 s 2ab 2q
‘f( )| /O(lfﬂ ((1+t)a+(1—t)b) dt

1 1 s 2ab

0
1o b ! . 2ab 2
TR /0(14) ((1—t)a—|-( 1+t )b) dt
b—

&y — 21 B(s +1,1).0F, (2,5 + 1, s—|—2

g

=a*{2B(s+1,1).2F(2q,

b
Fm2 () B(Ls 1) By (20 Ls + 2 )| ()]
b+a
b— b
+a®1{2B(1,s+ 1).2F1(2¢, 1,5 + 2; - a) - 22Q*S(b — )29B(1,s 4+ 1).0F1(2q,1,5 + 2

2q

B(s+1,1).2F1(2q,

+2 (e

for ¢ > 1, then the followmg

—5)|f' (@)
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using (2.15) in (2.14), we get

(/ 1(U(t>>QQ|f’<U<t>>th>3 ([a <t>>QQ|f'<L<t)>|th)5

bf
<2l7ig? <2B(s +11)2F1 (20,5 + 1,5+ 2 =) [/ (5)| + 2B(L s + 1) 2F1 (20,1,

1(Lylg — | £ (b)|2 —
+m|f(m)|2s £l B(s+1,1)aF (2,5 +1,5+2; L%a)

DHIf (@)

1
q

b

2¢q o a b—a
51;)(mﬁ( )N - |f(ﬂ)(1s+Uaﬂ@%Ls+2b+ 0

Applying (2.17) in (2.14), we obtain the required inequality. O

(2.16) +22975(

Corollary 5. Suppose the assumptions of the Theorem & are satisfied. If g(x) = % for all x € [a,b],
then one has the following inequality

f(a) + £(b) / g@) / g(x)f(x)dx‘ggli i

2 2

HIf (@)

)

(LN — | £(p)|e b—

b_
<2B<s+ L 1)2Fi(24,5 4+ 1,5+ 2 2 ) ()17 + 2B (L5 + 1).2Fi (20

1
q

b ,a
)l (2

Theorem 6. Let f: I C (0,00) = R be a differentiable function on I° and a, % € I°, m € (0,1] with

a <b andlet g : [a,b] — [0,00) be continuous positive mapping and harmonically symmetric to %

such that f' € L([a,b]). If |f'| is harmonically (s,m)-conver on [a, 2], then the following inequality
holds for ¢ > 1
a)+ f(b) [°g(z b g(x)f(x b— 1
HOLI0) [ty [ o) Oy Ly

2 x2 x2 8ab sqg+1

(2.17) 422078 (—— )7 — |f/(a)|q)B(1’S+1)'2F1(2q71’8+2;Z—I—Z)>

Q=

b - —2b-a)\ "
{2 G @ = DO+l ) (B0, 2 2R, M )

§ ] 1 l b — — — b— %

218) + 5 (- DI @]+l ) (B Dam (2 2L 22 02 T

Proof. From Lemma 1 and by using the harmonic (s, m)-convexity of |f’| on [a,b] , we get

‘f(a) 50 / g@), / RCARICIIN o ] “ g1l

x2 2

~ 8ab

| / (= O@OPIF @O+ [ (1= EOP o)

b—
<
—8b

A a @it e m s

)

a
m

1
(2.19) +/0<1ft><L<t>> (2517 @)+ m( 1 >|]}

Now, by using holder’s inequality, we get

| a=0@@R i+ mC 1 o
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< </01(1 —t)ﬂw(t))fqldt)
([ <1§t>%)1 '(b)+m(/01<1;’5>5th>é|f’<;>|}

q

(2.20)

=2 A (T DI Ol () (B0 2 am (2 M 2 ) T

Similarly, one has

| a=oar i@l me e
(2.21)
@ 1 i ) b 2 — 1 2 2—13¢—2 b—a\'T

— Sl @ =l @l o (BT an (2 2 M) T

U

Corollary 6. Suppose the assumptions of the Theorem 3 are satisfied. If g(x) = % for all x € [a,b],
then one has the following inequality

‘f )+ J( )/ (w)dx_/bg(x)f<m>dx‘<1( Ly

x2 x2 “8'sqg+1

2qg —1 2q

T @ el N (50, A T D)

2 2¢—1

5 / / b — — b— i
222) + 5 (- DIF @]+l () (B Dam (2 2L 22 00 T
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