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POSITIVE SOLUTIONS FOR A SINGULAR SUM FRACTIONAL
DIFFERENTIAL SYSTEM

MEHDI SHABIBI', MIHAI POSTOLACHE?3* AND SHAHRAM REZAPOUR?4

ABSTRACT. We investigate the existence of positive solutions for a singular sum fractional differential
system under some boundary conditions by providing different conditions. Also, we give an example
to illustrate one of our main results.

1. PRELIMINARIES

It has been published many works on the existence of solutions for different singular fractional
differential systems (see for example, [2], [3], [6], [7], [10] and [12]). In 2010, the existence of positive
solutions for the singular Dirichlet problem

Du(t) + f(t,u(t), D*u(t)) =0

with boundary conditions u(0) = u(1) = 0 is investigated, where 1 < a < 2,0 < p < a—1, fis a
Caratheodory function on [0, 1] x (0,00) x R and D?* is Riemann-Liouville fractional derivative ( [1]).
In 2013, the singular problem

D%u+ f(t,u, D"u, D"u) + g(t,u, DYu, D*u) =0

with boundary conditions u(0) = «/(0) = «”(0) = " (0) = 0 is reviewed, where 3 < a <4, 0 <y <1,
1 < p < 2, D is the Caputo fractional derivative and f is a Caratheodory function on [0, 1] x (0, 00)3
([4])-

By using main idea of [1] and [4], we investigate positive solutions for the singular differential system
of equations

D uy + fi(t,uty ooy um, DM ur, ooy DR um) + g1 (b uty ooy U, D ug, ..o, DRy, ) = 0,
...... (1.1)

DYy, + fr (b w1, - ooy Uy, DPYur, oo, DR u0) 4+ g (6,0t - o oy Uy, D*u, .o, DP g, ) = 0,

with boundary conditions u;(0) = 0, u}(1) = 0 and %[ui(t)]tzo =0forl1<i<mand2<k<n-—1,
where a; > 2, [oy] =n—1, 0 < p; < 1, D is the Caputo fractional derivative, f; is a Caratheodory
function, g; satisfies Lipschitz condition and f;(¢, x1, ..., %2y ) is singular at t = 0 of for all 1 < i < m.

We say that a map f:[0,1] x D C [0,1] x D — R" is Caratheodory whenever the function
t — f(t,x1,...,x,) is measurable for all (z1,...,2,) € D and (z1,...,2,) — f(t,x1,...,2,) is
continuous for almost all ¢ € [0,1] and for each compact K C D there exists ¢ € L[0,1] such that
|[f(t,z1, ..., 20)| < @i (t) for almost all t € [0,1] and (z1,...,2,) € K.

Put
1
[[[]2 =/0 |lz(tldt, ||=]] = sup{lz(t)] : t € [0,1]},  |[(z1, ..., z0)ll« = max{[lzal, ..., [[znll},
@1y @) e = max{[|za o lzall, 1], -l )} Y = Cr([0,1)), X = Cg((0,1).
By considering the problem (1.1), we assume the following hypotheses:
H1: fi,..., fm are Caratheodory functions on [0,1] x (0,00)?™ and there exists positive constants
mq, ..., My, such that

fi(tvmlv"w‘er) Z m;
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for almost all ¢ € [0,1] and all (z1,...,T2,) € D = (0,00)?™.

H2: ¢1,..., gm are nonnegative and
2m
95(6 1, o) = GiCt 1, o) < 3 Lk — i,
k=1
for almost all ¢t € [0, 1] and for all (z1,...,%am), (Y1, ---,Y2m) € D, where L}, ... L7, ... L ... L3
in [0, 00) are constants such that
1 ( m m Ll .
Lt + mt ) <1
I(a; — 1) ; ; (2 — ;)
H3: there exist some maps 71, ...,%n, € L'([0,1]), some non-increasing maps pi, ..., pm € Cr(D)
with
1
Mq(1 — M, (1 —
/ Di (Mltal, e MO ) Mtl—“m)dt < oo
o 2 2
and some functions Ay, ..., A, € Cr([0,00)*™) such that lim, w = 0, h; is nondecreasing in

all components and

filt,z1, .. @om) + gi(t, x1, ..o Zom) < i@, .., Tam) + Yi(t)hi(z1, ... o),

for almost all ¢ € [0,1] and all (z1,...,z2y) € D, where M, = mz% forall 1 <i<m.

Now for each 1 <4 < m and n > 1, put f;,(t,z1,...,%2m) = fi(t,x1(z1),. .., Xn(T2m)), where
Xn(u) = u whenever u > 1 and x,,(u) = u whenever u < & .
It is easy to check that

1 1 1 1
fi,n(t7x17‘-';$2m) +gi(ta$17"-7x2m) Spi(fa"w*) +71(t)h1(m1 + —y e L2m + 7)7
n n n n

fi,n(t7x17 .. 7$2m) Z m;

and
1 1
fin(t 21, m2m) + gi(t, 21, 2m) < pil@1, .. Tam) + V()R (331 t o Tam ﬁ)7
for all (z1,...,2,) € D, 1 <i<m and almost all ¢ € [0,1].
First, we investigate the regular fractional differential system

D™y + fin(tur, ..oy U, DM ug, ooy DFm ) = 0
...... (1.2)
Dy + fran(t, Uty U, D*Muq, ..., DFmuy, ) = 0,

with same boundary conditions in (1.1).
Now, we present some necessary notions.
According to [5], the Riemann-Liouville integral of order p for a function f: (0,00) — R is

PI) = 5 [ (€= s

if the right-hand side map is defined pointwise on (0, c0) .
The Caputo fractional derivative of order a > 0 for a function f: (a,00) — R is defined by

N B R O
D f(t) - F(n _ a) ~/O (t _ S)a+1—nd ’

where n = [a] + 1; please, see [5].

Lemma 1.1 ( [8]). Ifz € Cg[0,1]NLY[0,1], then I*D*z(t) = z(t) +Z?:_01 c;t® for some real constants

€0y Cly--+yCn-1, where 0 <n —1< a < n.
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It has been proved in [11] that

t
/ (t—s)""'sPds = BB+ 1,a)t**", B(B,a) =
0

We need the next result.

>0, a>-1.

Lemma 1.2 ( [9]). Let M be a closed, convex and nonempty subset of a Banach space X, A a compact
and continuous operator and B a contraction. Then, there exist z € M such that z = Az + Bz.

Lemma 1.3. Let y € LY[0,1], a > 2 and n = [a] + 1. Then, the unique solution of the equation

D%y ( ) y( ) = 0 with boundary conditions u'(1) = u(0) = u”(0) = -+ = u""1(0) = 0 is u(t) =
fo y(s)ds, where t € [0,1] and
t(1—s)>2
—_— 0<t<s<1
Ta—1) =r=0s
Gul(t,s) =
t1—s)2"2 (t—s)*!
- L 0<s<t<l.
T(a—1) T(a) =s=t=
Proof. By Using Lemma 1.1 and the boundary conditions, we get
1 t
u(t) = —=— / (t —s)* Yy(s)ds + et
L(a) Jo

and so u'(1) = —ﬁ fol(l — 8)*"2y(s)ds + ¢1. Since u/(1) = 0, ¢; = ﬁfol(l — 8)*2y(s)ds.
Thus, u( ) = —ﬁ fg t—s)* ty(s)ds + ﬁ fol(l — 5)*~2y(s)ds. Hence, we conclude that u(t) =

fo y(s)ds, where G, (t,s) = t(%(asli;Q — (t}‘z)o;_l whenever 0 < s <t < 1 and G.(t,s) =

%WheneverOgtgsgl_ -

Consider the Green function G, (t, s) as in Lemma 1.3.
If 0 <t <s <1, then it is clear that G,(t,s) > 0.

If0<s<t<1,then (1(;2)2 (t}‘z):)_l > 0 if and only if a — 1 > % and so G, (t,s) > 0.
One can check that G, (t,5) > 0, G(t,s) < (7 and fo alt,s)ds < ﬁ, for all t,s € (0,1).
Also, fo olt,8)ds > ﬁ - F((ﬁl) > tr((:jHl) and 2G,(t,s) > 0 for all t,s € (0,1). Moreover

Ga, 2Go € Cr([0,1] x [0,1]), ZGalt,s) < m, for all t,s € [0,1] and fol DG, (t,s) > 15 2 , for
all t € [0,1].
Suppose that x € C’l[ 1Jand 0 < p < 1. Since D*z(t) = ﬁ fot(tfs)”‘as’(s)ds forall0 <t <1,

|DHz| < r(‘f |L) fo “Hds = FU;_‘L)tl_“ and so |[DHzx| < F|(|;—|;|L) and D"z € Cg|0,1].

Now, put
P={(z1,...,2m) € X™ :2;(t) >0 and z;(t) > 0 for all t € [0,1] and 0 < i < m}.
For each n > 1 and 0 < i < m, define the maps

D, (@1, ... ) (t) = /1 Ga, (t,8) fin(s,x1(8),. .., zm(s), D" x1(s),..., D'y (s))ds,
0
and )
Ui(z1,...,xm)(t) = / Ga,;(t,9)gi(s,21(5), ..., Zm(s), D" x1(s), ..., D' xy(s))ds,
0

D1 (21,0 2m) (1)
To(x1, . yom)(t) = :
By (Z15- oy m)(2)
Uy (21, T ()
and U(xy,...,zm)(t) = for all (x1,...,2m) € P.
U (1, T ) ()
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Lemma 1.4. The map ¥: P — P is a contraction.

Proof. Tt is easy to check that ¥, (x1,...,2m,)(t) > 0 and

1
Uiy, .., xm)(t) = / %Gai (t,9)gi(s,21(8)y ..., xm(s), DM x1(8),..., D ™z (s))ds > 0
0

for all ¢ € [0,1], (z1,...,%m) € P and 0 <7 < m.
Note that,

[Wi(z1,. . 2m) = Wi(ys, - - ym)l

=t§%p”(/ G (t,9)[gi(5,21(5), -, T (), DP1(5), ..., DP e (5))

7gi(53y1(3)a cee aym(s)a Dulyl(s)a cet Dﬂmym(s»]d‘s

1
< \/ G (1, 8)ds| (L1 — 3]l + -+ L s — g
0

L1 | D" @y = DMyl - 4 Ly | D7y — DMy )

1 i i
< prag Bl =l -+ Ll = v
Lrn+1 Lém / /
Fhs It~ il 4+ sl — vl
7 . [P S N
= . yrrcatm 1ty dm Kk
i) N * o TE—m)
c L (S B Y e ) —
- F(az — ].) =1 el F(? — ,U,Z) o
for all 0 <7 < m and so
WGty tm) = ¥t = 0 it m) = Gl )|
1 m ) m i
< [ L} e ) — Y1y Ym

Similarly, one can show that

1 m ) m
< - ¢ __mtk o) = (U1 Um) s
—fél%)fn{p(ai_l) <ZLI€+ZF(2_M)>}|(9€17 @) = (Y153 Ym) ||

Thus, we get
W (21, s 2m) = Y(yr, o ym) [l

1 L 4
< — : —mth — (1.
= 12?;{1“(% —1) <Z Ly + Z L2 — M)) } (@1, zm) = (W1, Ym) s

k=1 k=1

Since maxi<i<m {F(a%l (Zk 1 Lk + Zk . F(m+k))} < 1, ¥ is a contraction mapping.

Lemma 1.5. For eachn > 1, T, is a completely continuous operator on P.
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Proof. Let n > 1, (z1,...,2,) € P and 1 <i < m. Choose a positive constant m; such that
fi,n(tyxl(t)a--wl'm( ) D‘ull‘l( ) D‘um ( )) Zmz
for almost all ¢ € [0, 1].
Since Gq, and 2 G, are nonnegative and continuous on [0, 1] x [0, 1] for all 1 < i < m, we conclude
that ®; (21, ..., 2m)(t) >0 and (®;,(z1,...,2,)) (t) > 0for all t € [0,1] and 1 < i < m. Hence, T,

maps P into P.
Now, we prove that T}, is continuous.

Let {(z1,k,-..,Zmk)} be a convergent sequence in P with limg_o(T18, ..., Tm k) = (T1,.- -, Tm)-
In this case, we get limp_o0 i = x; and limy_ oo x;’k = 2} uniformly on [0,1] (i = 1,2,...,m).
But, |DHiz; ,(t) — DFix;(t)| < ﬁ [0,1] and 1 < 4 < m. Thus, we conclude that

limy 00 Dz, 1 (t) = Dix;(t) uniformly on [0, 1]. Hence,

klggofi,n(tvxl,k(t)v'--7xm,k( ) Dulxl k( ) DHm m,k (t))

= fin(t,z1(t),...,xm(t), D" 21(t),..., DFmay,(t)).
Since fi, € Car([0,1] x R*™), {(z14,...,Zmx)} is bounded in X, there exist a map ¢; € L'[0,1]
such that
m; < fin(tx16(t), ..., xmp(t), DM ay (1), ..., DFmxy, (1) < @i(t) (1.3)
for almost all t € [0,1], 1 <i<m and k > 1.
By using the Lebesgue dominated convergence theorem, we conclude that

|‘I)i,n(x1,ka cee 7xm,k)(t) - (I)i,n(xlv o 7$m)(t)|

(8)y s Tmk(8), DMy 1 (8), ..., DPmap k(5))

—fin(s,21(8), ..., zm(8), D1 x1(s), ..., D*mxp(s))|ds,

and
z n 1‘1 ky+-+ysLm k))/(t) — (@i,n(xl, e ,.’L‘m) )/(t) |

_1 / | fin (s, 21,5(8), ..., Tm k(8), DM @1 k(s), ..., D*"apm i(s))

—fin(s,21(8), ..., xm(s), D1 x1(s),. .., DFmay(s))|ds.
Hence, limy_, o ‘(@i,n(zl,k, @) () = (B (1, ,xm))j (t)’ = 0 uniformly on [0,1] for j = 0, 1.

Thus, || Th(@1,ks - Tmk)(t) — Tz, ..., 2m)(t)]],, — 0 and so T}, is continuous.
Now, we prove that T;, maps bounded sets to relatively compact subsets.
Let {(z1k,--.,%m,k)} be a bounded sequence in P. Choose a positive number S such that ||z; k|| < S

x;kH < Sforall 1 <i<mandfor k> 1. Since ||D"x; | < ﬁ for all 1 < ¢ < m, there

exist a map o; € L'[0,1] such that (1.3) holds for almost all ¢ € [0,1], 1 <4 < m and k > 1.
Note that
0 S (I)i,n(xl,ka e aan,k)(t)

1
= / Ga,(t,8) fin(s,215(8), . s Zmk(s), D" 1 1(S), ..., DF"xpm 1(5))ds
0

Lot _ lleally
< F(az)/o sz(s)ds - F(()él)
0 < (q)i,n(wl,ka ceey mm,k))/(t)

1
P
_ / 0 G (1) fim(5: 21 5(8), o+ oy @i (5), Dy (5, o, DP7 o (5))ds
0

ot
1 ! lleilly
< - . — _lhelln
= T(ar - 1) /0 pi(s)ds T(a; — 1)

and
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for all 1 < ¢ < m. Thus, |Th(1,k: .- Tmk)(t)],, < B, where B = maxi<i<m F|(‘§7H1) This implies

that {T0, (1%, - - -, Tm,x)} is bounded in X™. Let 0 <3 <ty <1 and 1 <4 < m. Then, we have
|(@in(@1r s Tmk) (b2) = (Pin (@1 ks - Tmk)) (t1)]

to —t L
< #/ (1= 8) % 2f (8, 215(8), - .o Tmi(8), DM 2y o (8), ..., DFmay, 1(s))ds
(o —1) , , / , ,
1 t2 L
+7/ (b2 — )% fyn (5, 210(8), s e (8), DPI21 (), o DI (s)) s
F(ai) 0

ty
— / (t1 — s)ai_lfi’n(s, T1k(8)y oy Tmk(8), D" a1 i (s), ..., D™ ay, 1k(s))ds
0

M _ 1 . —_ s a;—1 —s a;—1
I'(a; — 1) (f2 = t2) + I(ev) [/o (B2 =) (b =)™ )

fin(s,211(8), .o, Xm k(8), DM a1 k(S), ..., D* a1 (8))ds

ta
+/ (ta — s)a"'_gfi’n(s, 216(8), s Tmk(8), DM a1 1 (8), ..., DF™ap, 1 (s))ds]

t1

H()OZHl 1 h a;—1 a;—1 . a;—1 X
< m(t2—tl)+m [/o ((t2 — ) — (t1 — ) ) ils)ds + (t2 — t1) il

Otifl

Let € > 0 be given. Since the function |t — s is uniformly continuous on [0, 1] x [0, 1], there
exist § > 0 such that (to — s)* ™1 — (t; —s)* ! <eforall 0 <t; <ty <1 withty —t; <6 and
0<s<t;. f0<t <ty <1 with t5 —#; < min{d, e}, then we have

3e i
@i (@ s o) (E2) = (Bin(@rs- o sm)) (01)] < SodPill
I‘(al)
Thus,
/ el H<pi||1
2010 s)(02) = Thlan )0, < e 2P,
This implies that {T) (z14,...,Zmk)} IS equi-continuous on [0,1]. Now by using the Arzela-Ascoli
theorem, {7}, (21 k, .-, %m.k)} is relatively compact and so T;, is completely continuous. O

2. MAIN RESULTS
Now, we are ready to provide our main results about the problem (1.1).

Theorem 2.1. Assume that hypotheses H1 and H2 hold. Then, the problem (1.2) with the boundary
conditions in (1.1) has a solution (1, ., Tmn) in P such that x; ,(t) > %, for allt € [0,1]
and 1 <1< m.

Proof. By using Lemma 1.4, the mapping ¥: P — P is a contraction. Also by using Lemma 1.5,
the operator T,,: P — P is a completely continuous one. Now by using Lemma 1.2, there exists
(T1my- -+ Tm,n) € Psuch that (z1n,...,Tmn) = Tn(@10s -y Tmn) F¥(T1 0, - -+, Tnn). Thus, z;, =
D n(T1my s Tmn) + Vi(Z1m, -, Tm,p) for all 1 < i < m. Hence,

Zin(2) */ Ga,(t,8)fin(s,x1(8),...,xm(s), D* x1(s),..., D'y, (s))ds

/ Ga,(t,9)gi(s,21(5), ... Zm(s), D" x1(s),. .., D' xy(s))ds

for all 1 < ¢ < m. By using the assumptions, we get z;,(t) > % for all ¢t € [0,1] and
1 < i < m. One can check that the element (1,,...,Zmn) € P is a solution for the problem (1.2)
with the boundary conditions in (1.1). O

Lemma 2.1. Assume that hypotheses H1, H2 and H3 hold. If (z1p,...,%Tm.n) i a solution for the
problem (1.2) with the boundary conditions in (1.1), then {(z1,n,...,Tmn)}n>1 s relatively compact
in P.



114 SHABIBI, POSTOLACHE AND REZAPOUR
Proof. As we found in the last result,
1
Zin(t) = / G (£ 8) fon (5210 ()s -+ o+ Ty (8), D1 (8), o DI ()
0

+/ Go, (t,9)gi(s,21.0(8), - -, Zmn(8), DM a1 n(5), ..., DF™xy, n(s))ds
0

foralln > 1, ¢t € [0,1] and 1 < ¢ < m. Thus,

( taz 1)
/815 o, (t, 8)ds > ( 3 ,

! ] /t(t — )My, (s)ds

I'(1 = pi) Jo
m;

= F(a)F(l—u)/o (t—s)"" (1= 5% ")ds > F(a)F(l—m/o (t —s)7Hi(1 - s)ds
for all ¢ € [0,1]. Thus,

for all t € [0,1]. Hence,
Dml’im(t) =

mtt = mt?>Hi
D(a)T(2—p)  T(a)T(3 - )
mtl <F(3 — ;) — (2 — ul)) _ A (2 — i — t) S mitt (1 — )
I'(a;) L2 = pa)D'(3 = pa) Plai) \TB—pi) /) — T()(3— i)
for all ¢ € [0,1]. Since I'(3 — ;) < 2, we get DFiz; ,,(¢) > %
Now, put

1 a; — 1
M= mmin L Ly
T D) Tl + 1)

Then, z;,(t) > M;t* and DFiz; ,(t) > wtl_‘” foralln > 1,t € [0,1] and 1 < i < m. Hence,
pi(z10(t), .. s 2mn(t), DM a1 0 (t),. .., DF ™y, 0 (1))

M 1 - Mm 1 - m —
Spi(M]_tal’--'7Mmta7n7¥tl_’ul “.7%751 ltm)
for all n > 1, ¢t € [0,1] and 1 < ¢ < m. This implies that

D“i.’lii’n@) >

1
0 40(0) = [5G (te8) fon(:000(5), 89 D1 (5] D (5)) s
0

1
+/ %Gai (t,8)9i (8, 21,1(8), .. s Bimn(8), D 21 1 (8), ..., DF™ @y, 1 (5))ds
0
1

1
Ml(l_U1) 1— Mm(l_/fém) 1—
<—— | pi(ser, . My som, D T aop DA T Hm) “m)d
_F(aifl)/op( 18 s 2 ° 2 s s

1 1
e — ; ; D ..., DHm
+r<ai-1)/0 V()i (@10 (9)s s T (8), DM @1 (8), o DI i (5)) s

foralln >1,t€[0,1] and 1 <1i < m.
Also, we have

1
M ]._ Mm ]-_ m —
/ i (Mlsal,...,Mmsa’", Mslﬂ“,...,Msl “’”)ds =A; < o0
0

2 2
foralll1 <i<m. If 77n = (15> Tmn)|l,,, then ||z; | < n, and ||x;n|| < 1, for all i and n.
Thus, |D*ix; ()] < r(2  foralln>1,¢€[0,1] and 1 <i <m and so
0<a5,(t)
< <Ai+hi(1+nn, L, T ...,1+77”)> I1illy
[(a; — 1) L2 —m)’ L2 = pm)

and so 0 < z; (1) = Ot Lo(s)dsforalln>1,¢€[0,1] and 1 <4 <m.
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Similarly, we obtain
ngi,n(t)
1 T TIn >
— (A +hi( g, g, L —— 1+ —— ) ) |
F(a‘—1)< (Lt K 02— pm) F(Q—um)) Il
and 7, < ( - (Ai—i—hi(l—l—nn,...,l—i—nml—&—%,.. 1+ F(2 5 )) [l7il|; for all i.

Since lim,_, w =0 for all 1 <i < m, there exists L; > 0 such that

<

1 v; v
- (A +h(Q 4y, 14,1 — ...,1+1) < v
e (0 @y )
for all v; > L;. If L = max{L4,..., Ly}, then
1 v v
- Ai+hi1+y,...,1+u,1+,...,1+) il < v
e = (M0 @ —m) e )
for all v > L. Thus, 7, = |10, Tman)ll,, = maxlgigm{ﬂzmﬂ,H:rg’nH} < L which implies
{lz1ms .-y zmn)ll,,} is bounded in X,,.
Now, put
L L
B = h; 1+L,...,1+L,1+7,...71+7)
( (2= ) (2 = pm)
and

M7(1 — M, (1 —
Fy(t) = pi(Mlta17...,Mmt“m,71( 5 i) g Ml = pom) 5 “m)tl—“m),
for all 7 and almost all ¢ € [0 1].
Then, we have A; = fo t)dt and

fi,n(ta fl,n(t) y Tm n(t) Dulxl,n(t)a RN} Dumxm,n(t))

+gi(t,z10(t), ..o, T (t), DMy (t), ..., DF ™ 0 (1))
S Fi(t) + Bii(t).
If0<t <ty <1, then

o 0
) = i (t2)] = | [ (G Go(t2:5) = G 5))

8), DM aq p(s), ..., DF™ @y, o ()
,DHray o (8), ..., DFm oy, o (s))]ds

[fi,n(s7x1,n(s)7 sy Tmyn
+gi(57x1,n(s>7 cees -Tm,n(

1 s 1 i(s ivi(s)ds ! —8) 72— (t; — 8)M ) (Fy(s ivi(s) )ds
ﬁr@_uWQfQAEU+&%Ud+A<m ) (t1 — ) 2)(Fi(s) + Biv(s) )d

+/7w_¢waa@+&%@Mﬂ

t1
1 b - .
< ———[(ta — t1)(As + Biflvillh) +/ ((ta = )% 72 = (tr — )™ ?)(Fi(s) + Bivi(s))ds
P(O[Z' — 1) 0
+(tg — 1) 2 (As + Billvill)]-
Let €; > 0 be given. Choose d(¢;) > 0 such that (to—s)* "2 —(t;—s)* 2 < ¢ forall 0 <t; <ty <1
with to — t; < d(¢;) and 0 < s < t. If we put

0 <0 <min{d(e1),...,0(em), *rFe1,..., *mem},
then \x;n(tg) - x;’n(tl)\ < %(AZ + B; ||villy) for all 1 < i < m. Hence, {(Z1,n,...,Zm.n)'} is
equi-continuous and so {(z1,n,...,Tm,n)}n>1 is relatively compact in X™. O
Theorem 2.2. Assume that hypotheses H1, H2 and H3 hold. Then the system (1.1) has a solution

(z1,...,2m) in P such that D*iz;(t) > Mtlﬂ“ and x;(t) > M;t® for allt € [0,1] and 1 < i <
m.
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Proof. By Theorem 2.1, for each n > 1 the system (1.2) with the boundary conditions in (1.1) has

a solution (%14,...,Zmn) € P. By Lemma 2.1, {(Z1n,...,%mn)}n>1 is relatively compact in X™.
By using the Arzela-Ascoli theorem, there exists (z1,...,2,) such that lim, oo (X105 Tmn) =
(x1,...,2m). It is obvious that (z1,...,x,,) satisfies the boundary conditions of the problem (1.1),

DHig; , — DFig; and

lm fin(t, x10(6), ..., Tmn(t), DMy n(t), ..., DF™ @y o (t))

n—oo
+gi(t, x10(8), ..., T (8), D*xy 0 (8), ..., DF ™y, (1))
= filt,z1(t), ..., xm(t), D" 21 (t), ..., DI, (1))
+gi(ta xl(t)a s :xm(t)a Dulxl(t)a B Dumxm(t))
for almost all ¢t € [0,1] and 1 < i < m and so (x1,...,2,) € P. Now, suppose that K :=
sup,>1 [[(®1,ns - -+ Tm.n) |, Then, we have [[DFiz; || < ﬁ for all n and 1 < i < m. Hence,
0 S GOM: (t7 5)[fi,n(sa Il,n(s)a e ,.’,Emm(s), Dulx17n(5)7 e 7Dl’«mxm7n(5))
+9i(8,21,1(5), .. s Zmn(8), D @1 1 (8), ..., DF " 20, 1 (5))]
1 K
S = ,...,l—i-%-s)
Fa — 1) @) fe—pum "
for almost all (t,s) € [0,1] x [0,1], n > 1 and 1 < ¢ < m. Now by using the Lebesgue dominated
theorem, we conclude that

xi(t):/o Go,(t, ) fi(s,21(8), ..y xm(8), DM x1(8), ..., DI, (s))ds
1

+/ Go,(t,9)gi(s,21(8), ..., xm(s), DM x1(s),. .., DF™xy(s))ds
0

for all 1 <i <m and t € [0,1], and this completes the proof. O
Next example illustrates our last result.

Example 2.1. Let us study the system
D%xl + %(2 + a1z + agze + agD%xl + a4D%x2)
t3

1 1
+(0.1eTF7 4 0.2eT77 + 0.1¢770T 0 4 0.2 17 P2 ) = ()
D%.'L'Q + %(1 + b1x1 + boxo + bgD%Jil + b4D%$2)
t2

H(0.2eT5 +0.2¢TF5 + 0.3¢ TP 4 0.1 TP ) = 0

with boundary condition z1(0) = x2(0) = 0, z{(1) = z4(1) = 0 and 2/(0) = 25(0) = 0, where
ai, as,as, aq, by, ba, by and by are positive constants.
Consider the functions

w"_‘

fi(t, x1, 2,3, 24) = (2 + a121 + agx2 + azrs + asxy),

]

t

| =

fa(t,z1, 20,23, 24) = — (1 + b1y + bawa + b3z + baxs),

N|=

t
g1(t, @1, o, 3, 24) = p1(x1, T2, T3, T4) = 0.le TP + 0.2¢ ¥z + 0.1eT#s + O.Qeﬁ,
92(t, 21, 2, T3, 24) = pa(T1, T2, T3, T4) = 0.2¢TF1 4 0.2eT7% + 0.3¢ 755 + O.Ieﬁ,

hi(x1, 22,23, 74) = 2+ @171 + a2%2 + azws + asTy,
ha(x1,x2,23,24) = 1 4+ b121 + baxo + b3z + by,
Ai(t) = ti% and Aqo(t) = ti% Put m =2, oy = g, Qg = %, 11 = %, Lo = %, Li =01, L} = 0.2,
Li=01,L;=021%=02L3=0.2, L =0.3, L3=0.1, m; =2 and my = 1.
One can check that f; and fs are Caratheodory functions,

f1(t,$171'2,1'3,$4) > 2; fg(t,$1,$2,$3,l'4) > 1
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for all (w1, 72, 23,24) € (0,00)* and almost all ¢ € [0,1], g; and go are nonnegative,

4

\gl(t,xl,x%xg,:u) - gl(t7y1ay27y37y4)| S ZLzll’Il - yl‘
=1

and

4
|92(¢, @1, T2, 23, w4) — g2(t, Y1, Y2, Y3, Ya)| < ZL?W — il

i=1

for all ($1,$2,$3,$4), (yl>y2793;y4) € (0700)4 and t € [07 1}

Also, we have

1 e 1 0.1 0.2
7P(a1_1)<ZLk+ZF(22_+’;1)):P(%_l)(o.1+0.2+r( ))+r( ))<1

and

then

and

and

5 5
k=1 k=1 3 3
2 2 2
1 ( ) L2, 1 0.3 0.1
—_— Ly + )z 02402+ =)+ ==57) <1
(o — 1) ; k kz::l (2 — p2) I(3-1) L)’ 1)
Note that the maps p; and p are non-increasing respect to all components.
If
3 4
a1 — 1 b 3 Qo — 1 3 4
M1::m1 =2 X = s MQI:mQ =1x = s
(o +1) ) T(%) [(ag + 1) N 3r()
1
My(1 - My(1 —
/ ” (Mltal,Mgto‘Q,il( ) -y Ma(l = pi2) m)tl‘”?)dt < oo
0 2 2
1
M;(1 - My(1 —
/ P2 (Mlto‘l,Mzt‘”, M=) 5 “l)t““l, Mol = po) 5 MZ)tl’“z)dt < 0.
0
Also, the functions hy and hs are non-decreasing respect to all components,
lim hi(z,...,xz) lim 2+ a1T + asx + azx + asx _0
T —00 €T ey €T B
lim ho(x,...,x) lim 1+ b1z + box + bz + bax _o
T—00 T ey €T e

Now by using Theorem 2.2, the problem (2.1) has a positive solution.
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