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ON THE COMPOSITION AND NEUTRIX COMPOSITION OF THE DELTA
FUNCTION AND THE FUNCTION cosh™'(jz|'/" + 1)

BRIAN FISHER!, EMIN OZCAG?%* AND FATMA AL-SIREHY?

ABSTRACT. Let F be a distribution in D’ and let f be a locally summable function. The composition
F(f(x)) of F and f is said to exist and be equal to the distribution h(x) if the limit of the sequence
{Fn(f(x))} is equal to h(z), where Fy(z) = F(x) * én(x) for n = 1,2,... and {dn(x)} is a certain
regular sequence converging to the Dirac delta function. It is proved that the neutrix composition
5(5)[cosh’1(a:1+/r + 1)] exists and

itk
(s) —1,.1/r _ k (_1)2 TCr s,k (k)

8% feosh™ (z}/" + 1)] (>7(kr+r)k! o\ (z),
fors=M—-1,M,M+1,...and r=1,2,..., where

e ()R

j os+itl

=0
M is the smallest integer for which s — 2r +1 < 2Mr and r < s/(2M + 2).
Further results are also proved.

1. INTRODUCTION

Let D be the space of infinitely differentiable functions with compact support, let D’ be the space of
distributions defined on D.

A sequence of functions {f,} is said to be regular if

(i) fn is infinitely differentiable for all n,

(ii) the sequence {{fn, )} converges to a limit (f, ) for every ¢ € D,

(iii) (f, ) is continuous in ¢ in the sense that lim, o (fn,¢) = 0 for each sequence ¢,, — 0 in D,
see [24].
There are many ways to construct a sequence of regular functions which converges to d(x). For instance
let p be a fixed infinitely differentiable function having the properties:

() pl@)=0for o] >1, (i) plx)>0,

1

(i) plx) = p(—), w [ pla)dz =1,

putting 6, (z) = np(nz) for n = 1,2,..., it follows that {J,(z)} is a regular sequence of infinitely
differentiable functions converging to the Dirac delta-function é(x).

Further, if F is a distribution in D" and F,(x) = (F(x —t), 6, (x)), then {F,(z)} is a regular sequence
of infinitely differentiable functions converging to F(z).

In the framework of the theory of distributions, no meaning can be generally given to expressions
of the form F(f(z)) where F' and f are arbitrary distributions. However, in elementary particle
physics one finds the need to evaluate §%(z) when calculating the transition rates of certain particle
interactions, [14]. In addition, there are terms proportional to powers of the ¢ functions at the origin
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coming from the measure of path integration [10]. The composition of a distribution and an infinitely
differentiable function is extended to distributions by continuity provided the derivative of the infinitely
differentiable function is different from zero, [2]. The composition of a distribution and an infinitely
differentiable function is extended to distributions by continuity provided the derivative of the infinitely
differentiable function is different from zero, [2]. Fisher [5] defined the composition of a distribution
F and a summable function f which has a single simple root in the open interval (a,b), and it was
recently generalized in [18] by allowing f to be a distribution. Antosik [1] defined the composition
g(f(x)) as the limit of the sequence {g,(f»)} providing the limit exists. By this definition he defined
the compositions v =0, v/62 +1 =146, log(1+6) =0, sind =0, cosd = 1 and 11? =1.

For many pairs of distributions, it is not possible to define their compositions by using the defini-
tion of Antosik. Using the neutrix calculus developed by van der Corput [3], Fisher gave a general
principle for the discarding of unwanted infinite quantities from asymptotic expansions and this has
been exploited in context of distributions, see [4,5]. The technique of neglecting appropriately defined
infinite quantities was devised by Hadamard and the resulting finite value extracted from divergent
integral is referred to as the Hadamard finite part, see [16]. In fact his method can be regarded as a
particular applications of the neutrix calculus.

The following definition of the neutrix composition of distributions is a generalization of Gel’fand
and Shilov’s definition of the composition involving the delta function [15], and was given in [5].

Definition 1.1. Let F be a distribution in D’ and let [ be a locally summable function. We say that the
neutriz composition F'(f(z)) exists and is equal to h on the open interval (a,b), with —oco < a < b < 00,
if

N-lim [ F.(f(z))p(x)de = (h(z), o(z))

n—oo — 00
for all ¢ in Dla,b], where F,(x) = F(x) * §,(x) forn =1,2,... and N is the neutriz, see [3], having
domain N’ the positive and range N the real numbers, with negligible functions which are finite linear
sums of the functions
PPn" " tn, " A>0, r=1,2,...
and all functions which converge to zero in the usual sense as n tends to infinity.
In particular, we say that the composition F(f(x)) exists and is equal to h on the open interval

(a,0) if

oo

im [ F(f(e)p(@)de = (h(2). o)
n—oo [ o
for all ¢ in Dla,b).
Note that taking the neutrix limit of a function f(n), is equivalent to taking the usual limit of
Hadamard’s finite part of f(n), see [4,6,7,16].

2. MAIN RESULTS

By using Fisher’s definition Koh and Li give meaning to §* and (6')* for k = 2,3, ..., see [17], and
the more general form (6(")* was considered by Kou and Fisher in [18]. The meaning has been given
to the symbol 6% in [22] and the k-th powers of & for negative integers were defined in [21].

Recently, in [20] Chenkuan Li and Changpin Li used Caputo fractional derivatives and Definition
1.1 and chose the following §—sequence

dn(z) = (2)67"“72 (r €R)
T
to redefine powers of the distributions §*(x) and (§')*(z) for some values of k € R.
The following two theorems were proved in [6] and [7] respectively.

Theorem 2.1. The neutriz composition 6*) (sgnz|z|*) exists and

6@ (sgnz|z|*) =0
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fors=10,1,2,... and (s+ 1)\ =1,3,... and
_1)HDOHg
6(3) A\ — ( 6((5—{-1))\—1)
senaial) = (o (@)
fors=0,1,2,... and (s+ 1)\ =2,4,....
Theorem 2.2. The compositions 6*=1) (sgn x|x|'/*) and §~V(|x|*/*) exist and
§@ V(sgnalzV/*) = §(29)18'(x),
ST (2] V?) = (=1)*1é(x)
fors=1,2,....
The next theorem was proved in [9].
Theorem 2.3. The neutriz composition 6 (sinh™* +/ ) exists and
M—1kr+r—1 itk
(5) s i—1 1/7« k;r—i—r—l (=D ras ki o)
et = 35 (M) S,
fors=0,1,2,...andr=1,2,..., where M is the smallest positive integer greater than (s —r +1)/r
and
. (=1)°[(kr +r —29)° + (kr + 1 — 20 — 2)7]
.8,k — 9 .
In particular, the neutrixz composition § (sinh71 aci/ ") exists and
(sinh ™! xi_/T) =0,
forr=23,....
. . s — 1/r
In the following, we define the function 6¢*)[cosh™* ( +/ +1)] by
(s) -1 1/r
() [eoh =1 (/7 _ [ 0"[cosh™ (|z[V/" +1)], = =0,
6" [cosh™ (/" +1)] { 0. <0
and we define the function §(*) [coshfl(xlf/r + 1)] by
(s) -1 1/r
() [ =1 (7 1/7 6 [cosh™ (|z[¥" +1)], 2 <0,
6 cosh ™ (z/" 4+ 1)) = { 0. >0
forr=1,2,...and s =0,1,2,....
We also use the following easily proved lemma.
Lemma 2.1.
1 .
i (s) o 0, 0<t<s,
/0 Er (t)dt_{ 1(=1)%s!, i=3s
for s=0,1,2,....
We now prove
Theorem 2.4. The neutriz composition 6 [cosh™ " (z/ U4 1)] exists and
/ M—1 kr+r re
5@ cosh™ (/" 7’“5’“5(’@) 2.1
[cosh™ (z/" + kzo z; N (z) (2.1)
fors=M—-1, M M+1,... and r=1,2,..., where
@ i (_1)kr+r+s—i(2j _ i)s+1

M s the smallest integer for which s —2r +1 < 2Mr and r < s/(2M + 2).
In particular, the neutriz composition §[cosh™* (24 + 1)] exists and

S[cosh™ (z +1)] =0

(2.2)
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forr=1,2,... and the neutriz composition ¢§'[cosh™
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Yoy +1)] exists and

8'[cosh ™ (zp +1)] = ié(a:)

Proof. To prove equation (1), we first of all have to evaluate

1
/ 60 [coshfl(xi/r + 1)]2" dx
-1

1
ns+1/ p®ncosh™ (z 1/T+1)]xk dx

-1

1
nst / P [ncosh™ (/" 4 1)]z* da
0

0
+n8+1/ P (0)z" da

-1

= L1+ s
It is obvious that 0
N-limI, = Nflimnsﬂ/ P (0)z* dz = 0,
n—oo n—oo -1
for k=0,1,2,....
Making the substitution ¢t = ncosh_l(xl/ "+ 1), we have for large enough n
1
L = rns/ [cosh(t/n) — 11"+ = Lsinh(t/n)p')(t) dt
0
7‘77,8+1

Ckr4r

/l[cosh(t/n) — 1]k p(s D (1) dt

k
nstl T+T (kﬂ“ +r

k'rJrr ‘
1=0

rnst
kr +7r

rnSt
kr +r

It follows that

1 kT—H (k;r—l—r)
1 kr+r (k’l"+7’) % (

kr+'f

J

J=0

)2
()=
(

kr—i—r z

=0

1

Cosh’(t/n) s+ (1) dt

( ) o / expl(27 — i)t /n] (1) de

k:r+r i m 1
(2] ) / tmp(s+1)(t) dt.
Simlnm ;

kr+r+s 2(2] _

2i(s + 1)!

kr+r+s 1(2J _ Z)S+1

21+1

/ l\kosh(t/n) — M (1)
0

rnt /Ol[ﬁt/n)2 + O™ HMH D (1)) dt

k
N-liml, = —_ (Hr)
n—o0 kr+r )
=0 Jj=
o ’“*T(m«w) : )
kr—i—riz i =\
B T kr” kr —|—r .
- k’l"—|—’f‘ vard .8,k
for k=0,1,2,....
When k£ = M, we have
rnstl
I <
|1‘ - Mr+r
<
<

1
rns—QMr—Qr+1/ [1 +O(n—4JV1r—4r)]|p(s+l)(t)|dt
0

O(nsf2Mr72r+1)‘

i)s—i—l 1
/ ts+1p(s+1)(t) di
0

(2.3)

(2.4)

(2.5)
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Thus, if ¢ is an arbitrary continuous function, then

1
lim () [cosh_l(:ci_/r + D)]aMyp(z) dx = 0, (2.7)

n—oo 0

since s —2Mr —2r +1 < 0.
We also have

0 0
| oo @ s vy de = w000 s

-1

and it follows that 0
N—lim [ 6[(sinh™ 2} )Yy (x) dz = 0. (2.8)

n— 00 —1

If now ¢ is an arbitrary function in D[—1, 1], then by Taylor’s Theorem, we have

M—-1 (k) 0 M
@ x
p(z) = Z k!( )xk + MSD(M)(@%
k=0
where 0 < ¢ < 1, and so
N—1lim (6 [cosh ™ ( 1/r+1)} o(z)) = N—lim Z SD / 6 [cosh™ ( +1)]:Ekdx
M-—1 SO(k) (o ) "
N-—lim h™ "+1
+ {—lim Z / 6 fcosh™ (2} " + 1)]2" dw
+ lim — / 64 [cosh™* + 1)]aM M) (¢2) da
n—oo
L () [eosh =1 (417 M (M)
+nh—>Holo M'/ 0, [cosh™ ()" 4+ 1)]a™ ") (€x) do
B M—1 kr+r Tcrgk(P( )<0)
=2 2 i) 1O
k=0 =0 ¢ T+ ) :
M—1 kr+r re .
_ T,8, (k) 9
-> 3 (§) Sl 59w, oo, (2.9

on using equations (4) to (9). This proves equation (1) on the interval (—1,1).
It is clear that §(*) [Coshfl(xi/r +1)] =0 for > 0 and so equation (1) holds for = > 0.
Now suppose that ¢ is an arbitrary function in Dla, b], where a < b < 0. Then

b b
/ 8P [cosh™ (2} + D)p(x) de = n+! / P (0)p(x) d
and so

b
N—lim [ 6)[cosh™ (z}/" + 1)]p(x) dz = 0.
n—oo a
It follows that ) [cosh™" (z/ Ur g 1)] = 0 on the interval (a,b). Since a and b are arbitrary, we see that
equation (1) holds on the real line.

To prove equation (2), we note that in this case s = 0 and so M = 0 for r = 1,2,.... The sum in
equation (1) is therefore empty and equation (2) follows.

When r = s = 1 it follows that M = 1 and equation (3) then follows from equation (1). This
completes the proof of the theorem.

Corollary 2.1. The neutriz composition 65 [coshfl(xl_/r + 1)] exists and

M—1 kr+r
s — T 2 : 2 : TCr s,k
§leosh 1(1{/ ( ) kr +1) klé(k)(m) (2.10)

k=0 =0
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fors=M—-1,M,M+1,...andr=1,2,...,
In particular, the neutriz composition § [coshfl(xlf/ " +1)] exists and

Slcosh M (" +1)] =0 (2.11)
forr=1,2,... and the neutriz composition &'[cosh™* (z"/ YTy 1)] exists and
§'[cosh M (z'/" + 1)] = 5@;). (2.12)

Proof. Equations (10) to (12) follow immediately on replacing z by —z in equations (1) to (3)
respectively.

Corollary 2.2. The neutriz composition 6 [cosh_l(\a:|1/r +1)] ewists and

5 cosh ™ (|z|Y" + 5 —1* ]rcréké(k) 2.13
fcosh (] - Y3 (O (213)

k=0 =0
fors=M—-1 M, M+1,...andr=1,2,...,
In particular, the neutriz composition §[cosh™ (|z|'/" 4 1)] ezists and

S[cosh (x| +1)] =0 (2.14)
forr=1,2,... and the neutriz composition &'[cosh ™ (|z|*/" + 1)] exists and
1
§'[cosh ™ (V7 4+ 1)) = 0(@). (2.15)

Proof. Equation (13) follows from equations (1) and (10) on noting that
6 [cosh ™! (Jz[Y/" 4+ 1)) = 6 [cosh_l(;vi/r +1)] 406 [cosh_l(xi/r +1)].
Equations (14) to (15) follow similarly.

Theorem 2.5. The neutriz composition 6 [cosh™ (x4 4+ 1)/7] ezists and

M—1kr+r kr +r ) b
s - r r,s,k
6@ [cosh ™ (x4 + 1)/ g E ( ) o ~ L sk 5(R) () (2.16)

k=0 =0
fors=M—-1, M, M+1,... andr=1,2,..., where

ritr . i . .
ri+ 7\ (=1)5tk—ip (25 — pj — p)stL
br,s,k = Z < . ) ( ) - ( J ) )

= j 2ritr+l(pg 4 1)

M s the smallest integer for which s +1 < 2Mr and r < (s+1)/(2M).

Proof. To prove equation (16), we first of all have to evaluate

1
/ 6O cosh ™ (zy + 1) ak dz = n”l/ p I [ncosh™ (x4 + 1) z* da

—1
1

= n”l/ P ncosh ™ (z + 1)V/")2* dx
0

0
+ns+1/ P (0)z" da

-1

Ji + Jo. (2.17)

It is obvious that

0
N—lim J, = N— hmn““/ P (0)zk dz = 0, (2.18)
-1

n—oo n— oo

for k=0,1,2,....
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Making the substitution ¢t = ncosh_l(x+ + 1)1/T, we have for large enough n

1
J o= ot / [cosh” (t/n) — 1]¥ cosh” ™! (t/n) sinh(t/n)p'® () dt
0

k 1
= m’ MY (c1yp-i cosh™ 1 (¢/n) sinh(t/n)p'®
S (5) e [ eostet msinne e ) a

= s+1 - k (_1>k_i ' hTi+r (s+1) d
= —rn ; i) iy cos (t/m)p (t)dt
k ri4r . . 1
. k ri+r (—1)k— . ’ |
- o ST (g £ 1) 2j —ri —r)t/n]pB TV (t) dt
™ ; <Z> j;o ( j >2m+r(m- —|—r) /0 exp[( ] — Tt 7“) /n]p ( )
Fax gy ad k—ifo: . m [l
kr+r ri+r (1) *(2j—ri—r) /
— s+1 S
- i t t) dt.
™ ; ( 1 ) Z ( J ) Z 2”+T(T‘i +T)m!nm 1% ( )
=0 j=0 m=0 0

It follows that

kr+r ri+r . k—i . . s+1 1
. kr+r ri+r\ (=) (25 —ri —7)5T / 1
N—limJ; = — : 5B (1) dt
S 2_2( S () e [ e

n— oo

j=0
_ kZ* (kr + ) Z ( + ) (=1)*+*ir(2) — ri — r)**!

P i )=\ 2ritr+l(rj 4 1)

kr+r

k
= ( Tfr)br,s,k, (2.19)
1
i=0

for k=0,1,2,....
When k£ = M, we have

1] < rns/o ‘[coshr(t/n) — 1JM cosh" ' (t/n) sinh(t/n)p(s)(t)’ dt

1
< /0 [(t/m)2" 4+ O(n ™)™ cosh™" (t/n) sinh(t/n)p (1) dt
— O(nS_QMT_l)-

Thus, if ¢ is an arbitrary continuous function, then

1
lim 6 [cosh™ (x4 4+ 1) aMep(z) dz = 0, (2.20)

n— oo 0

since s — 2Mr —1 < 0.
We also have

0 0
| aeosh s+ 1) i) = wt [ o 0)0(e) do
—1 —1

and it follows that

0
N—lim [ 6[(sinh™ 2} )Y/ (x) dz = 0. (2.21)

n— 00 —1

If now ¢ is an arbitrary function in D[—1, 1], then by Taylor’s Theorem, we have

M-1 (k) M
©'"(0) T
pla) =y Tyt + e (gw),
k=0
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where 0 < £ < 1, and so
N—1im (8 [cosh ™ (24 + 1)), p(x)) =

n— oo
ML k) (g) 1
= I\Z;Iiom Z SDT() ; 6 [cosh™ (x4 + 1)V/7)2* da
k=0 )
@(k) 1
+N—hmz / 6 [cosh™ (x4 + 1)V/")2* da
n—roo
k=0

+ lim 7/ 5( [cosh™ (w +1)1/r] M (M)(gx)

1
+ lim M/ 6 cosh ™ (z 1 4+ 1) MM (¢x) da
P

M—1 kr+r kT-l—T rskﬁp( )(0)
> et

k=0 =0
M—1 kr+r

> 2 (kr“) )k!”k@(’“)( ), ¢(x)), (2.22)

k=0 =0

on using equations (17) to (22). This proves equation (16) on the interval (—1,1).
Replacing « by —z in equation (16), we get
Corollary 2.3. The neutriz composition 6 [cosh™ (z_ 4+ 1)'/"] ezists and

(s) -1 1/r = kr+r rsk (k)
5 cosh ™ (z_ 4+ 1) = > Y L2k 50 (1) (2.23)

|
k=0 =0 ¢ k!
fors=M—-1,M,M+1,... andr =1,2,...,

Corollary 2.4. The neutriz composition ) [cosh™ (|z| 4+ 1)'/"] ezists and

M—1 kr+r k
s - kr +7\ 1+ (=1)]%b,s,
6 [cosh™ (|| + 1)¥/7] Z Z ( >[(k!)]k5(k)(x) (2.24)

fors=M—-1,M,M+1,... and r = 1,2,...,
Proof. Equation (24) follows from equations (16) and (23) on noting that
6@ [cosh™(|z| + 1)/ = 6 [cosh™ (x4 + 1)) 4+ 6 [cosh ™ (z_ + 1)V/7].

For further related results on the neutrix composition of distributions, see [11], [12], [13], [19] and [23].
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