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BOUNDING THE DIFFERENCE AND RATIO BETWEEN THE WEIGHTED

ARITHMETIC AND GEOMETRIC MEANS

FENG QI1,2,3,∗

Abstract. In the paper, making use of two integral representations for the difference and ratio of the

weighted arithmetic and geometric means and employing the weighted arithmetic-geometric-harmonic

mean inequality, the author bounds the difference and ratio between the weighted arithmetic and
geometric means in the form of double inequalities.

1. Main results

In [3, Theorem 2.3, Eq. (2.16)], the difference A(a, b;λ)−G(a, b;λ) between the weighted arithmetic
mean A(a, b;λ) = λa + (1 − λ)b and the weighted geometric mean G(a, b;λ) = aλb1−λ was expressed
as an integral representation

A(a, b;λ)−G(a, b;λ) =
sin(λπ)

π

∫ b

a

G(t− a, b− t;λ)

t
d t (1.1)

for b > a > 0 and λ ∈ (0, 1). In [4, Remark 4.1], the ratio A(a,b;λ)
G(a,b;λ) between the weighted arithmetic

mean A(a, b;λ) and the weighted geometric mean G(a, b;λ) was expressed as an integral representation

A(a, b;λ)

G(a, b;λ)
= 1 +

sin(λπ)

π

∫ b

a

G(t− a, b− t; 1− λ)

t2
d t (1.2)

for b > a > 0 and λ ∈ (0, 1).
In this paper, making use of the integral representations (1.1) and (1.2) and employing the weighted

arithmetic-geometric-harmonic mean inequality

A(a, b;λ) > G(a, b;λ) > H(a, b;λ) (1.3)

for b > a > 0 and λ ∈ (0, 1), where H(a, b;λ) = 1
λ
a+

1−λ
b

, for b > a > 0 and λ ∈ (0, 1) is called the

weighted harmonic mean, we will bound the difference A(a, b;λ) − G(a, b;λ) and the ratio A(a,b;λ)
G(a,b;λ)

of the weighted arithmetic mean A(a, b;λ) and the geometric mean G(a, b;λ) in the form of double
inequalities.

Our main results can be stated as the following theorems.

Theorem 1.1. For b > a > 0 and λ ∈ (0, 1), the difference between the weighted arithmetic and
geometric means can be bounded by

sin(λπ)

π

(
(2λ− 1)(b− a) + [(1− λ)b− λa] ln

b

a

)
> [λa+ (1− λ)b]− aλb1−λ

>


sin(λπ)

π

[
λ(1− λ)(b− a)2

(2λ− 1)2[λb− (1− λ)a]
ln

(
1

λ
− 1

)
− ab(ln b− ln a)

λb− (1− λ)a
+

b− a
2λ− 1

]
, λ 6= 1

2
;

1

π

b2 − 2ab(ln b− ln a)− a2

b− a
, λ =

1

2
.

(1.4)
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Theorem 1.2. For b > a > 0 and λ ∈ (0, 1), the ratio between the weighted arithmetic and geometric
means can be bounded by

1 +
sin(λπ)

π

[
λ
b2 − a2

ab
+ (1− 2λ) ln

b

a
+
a

b
− 1

]
>
λa+ (1− λ)b

aλb1−λ

>



1 +
sin(λπ)

π

{
(1− λ)b2 − λa2

[λa− (1− λ)b]2
ln
b

a
+

(b− a)[λa− (1− λ)b]

[λa− (1− λ)b]2

+
(1− λ)λ(b− a)2

(2λ− 1)[λa− (1− λ)b]2
ln

(
1

λ
− 1

)}
, λ 6= 1

2
;

1 +
2

π

[
(a+ b)

b− a
ln
b

a
− 2

]
, λ =

1

2
.

(1.5)

2. Proofs of Theorems 1.1 and 1.2

Now we start out to prove our main results.

Proof of Theorem 1.1. By virtue of the inequality in the left-hand side of (1.3), we obtain∫ b

a

(t− a)λ(b− t)1−λ

t
d t <

∫ b

a

λ(t− a) + (1− λ)(b− t)
t

d t

= [(1− λ)b− λa](ln b− ln a) + (2λ− 1)(b− a).

Substituting this into (1.1) yields

[λa+ (1− λ)b]− aλb1−λ < sin(λπ)

π

{
[(1− λ)b− λa] ln

b

a
+ (2λ− 1)(b− a)

}
.

By virtue of the inequality in the right-hand side of (1.3), we obtain∫ b

a

(t− a)λ(b− t)1−λ

t
d t >

∫ b

a

1

t

1
λ
t−a + 1−λ

b−t
d t

=
λ(1− λ)(b− a)2

(2λ− 1)2(λb− (1− λ)a)
ln

(
1

λ
− 1

)
− ab(ln b− ln a)

λb− (1− λ)a
+

b− a
2λ− 1

.

Substituting this into (1.1) yields

[λa+ (1− λ)b]− aλb1−λ > sin(λπ)

π

{
λ(1− λ)(b− a)2

(2λ− 1)2[λb− (1− λ)a]
ln

(
1

λ
− 1

)
− ab(ln b− ln a)

λb− (1− λ)a
+

b− a
2λ− 1

}
→ 1

π

b2 − 2ab(ln b− ln a)− a2

b− a

as λ→ 1
2 . The double inequality (1.4) is thus proved. The proof of Theorem 1.1 is complete. �

Proof of Theorem 1.2. By virtue of the inequality in the left-hand side of (1.3), we obtain∫ b

a

(t− a)1−λ(b− t)λ

t2
d t <

∫ b

a

(1− λ)(t− a) + λ(b− t)
t2

d t

= λ
b2 − a2

ab
+ (1− 2λ) ln

b

a
+
a

b
− 1.

Substituting this into (1.2) yields

λa+ (1− λ)b

aλb1−λ
− 1 <

sin(λπ)

π

[
λ
b2 − a2

ab
+ (1− 2λ) ln

b

a
+
a

b
− 1

]
.
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By virtue of the inequality in the right-hand side of (1.3), we obtain∫ b

a

(t− a)1−λ(b− t)λ

t2
d t >

∫ b

a

1

t2
1

1−λ
t−a + λ

b−t
d t

=
(1− 2λ)

[
λa2 − (1− λ)b2

]
ln b

a + (b− a)
{

(2λ− 1)[λa− (1− λ)b] + (1− λ)λ(b− a) ln
(
1
λ − 1

)}
(2λ− 1)[λa− (1− λ)b]2

→ 2(a+ b)

b− a
ln
b

a
− 4

as λ→ 1
2 . Substituting this into (1.2) yields

λa+ (1− λ)b

aλb1−λ
− 1 >

sin(λπ)

π

{
(1− λ)b2 − λa2

[λa− (1− λ)b]2
ln
b

a
+

(b− a)[λa− (1− λ)b]

[λa− (1− λ)b]2

+
(1− λ)λ(b− a)2

(2λ− 1)[λa− (1− λ)b]2
ln

(
1

λ
− 1

)}
→ 2

π

[
(a+ b)

b− a
ln
b

a
− 2

]
as λ→ 1

2 . The double inequality (1.5) is thus proved. The proof of Theorem 1.2 is complete. �

3. Remarks

Finally we list several remarks on our main results.

Remark 3.1. When λ = 1
2 and b > a > 0, the double inequality (1.4) can be written as

1

π

(
b− a

2
ln
b

a

)
>
a+ b

2
−
√
ab >

2

π

(
a+ b

2
− ab ln b− ln a

b− a

)
> 0.

When λ = 1
2 and b > a > 0, the double inequality (1.5) can be written as

b− a
π

(
a+ b

2ab
− 1

b

)
>

a+ b

2
√
ab
− 1 >

2

π

[
(a+ b)

b− a
ln
b

a
− 2

]
> 0.

Remark 3.2. From the integral representations (1.1) and (1.2), we can easily see that all inequalities
for bounding the (weighted) geometric mean can be used to construct inequalities for bounding the
difference and ratio between the (weighted) arithmetic and geometric means.

Remark 3.3. Let 0 < ak < ak+1 for 1 ≤ k ≤ n − 1, wk > 0 for 1 ≤ k ≤ n, and z ∈ C \ [−an,−a1].
Theorem 3.1 in [7] states that the principal branch of the weighted geometric mean

∏n
k=1(z + ak)wk

has the integral representation

n∏
k=1

(z + ak)wk =

n∑
k=1

wkak + z − 1

π

n−1∑
`=1

sin

[(∑̀
j=1

wj

)
π

]∫ a`+1

a`

n∏
k=1

|ak − t|wk
d t

t+ z
. (3.1)

By the same arguments as in proofs of Theorems 1.1 and 1.2, we can derive from (3.1) lower and upper
bounds for the difference

∑n
k=1 wkak −

∏n
k=1 a

wk
k between the weighted arithmetic mean

∑n
k=1 wkak

and the geometric mean
∏n
k=1 a

wk
k .

Remark 3.4. In [4], it was obtained that, for ak < ak+1, z ∈ C \ [−an,−a1], and wk > 0 with∑n
k=1 wk = 1, the principal branch of the reciprocal of the weight geometric mean

∏n
k=1(z + ak)wk

can be represented by

1∏n
k=1(z + ak)wk

=
1

π

n−1∑
`=1

sin

(
π
∑̀
k=1

wk

)∫ a`+1

a`

1∏n
k=1 |t− ak|wk

1

t+ z
d t. (3.2)

The integral representation (3.2) generalizes corresponding results in [2, 3] and [5, Lemma 2.4].

Remark 3.5. This paper is a companion of the articles [1–4,6–10].
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