A Computational Strategy of Variable Step, Variable Order for Solving Stiff Systems of Ordinary Differential Equations

Main Article Content

J. G. Oghonyon
P. O. Ogunniyi
I. F. Ogbu

Abstract

This research study focuses on a computational strategy of variable step, variable order (CSVSVO) for solving stiff systems of ordinary differential equations. The idea of Newton’s interpolation formula combine with divided difference as the basis function approximation will be very useful to design the method. Analysis of the performance strategy of variable step, variable order of the method will be justified. Some examples of stiff systems of ordinary differential equations will be solved to demonstrate the efficiency and accuracy.

Article Details

References

  1. M. L. Abell, J. P. Braselton, Differential Equations with Mathematica, Elsevier Academic Press, USA, 2004
  2. U. M. Ascher, L. R. Petzoid, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, SIAM, USA, 1998.
  3. K. Atkinson, W. Han, D. Stewart, Numerical solution of ordinary differential equations, John Wiley & Sons, Inc., New Jersey, 2009.
  4. F. Ceschino, Modification de la longueur du pas dans l’ integration numerique par les methods a pas lies, Chifres, Vol. 2, 101-106, 1961.
  5. W. Cheney, D. Kingaid, Numerical Mathematics and Computing, Thomson Brooks/Cole, USA, 2008.
  6. J. R. Dormand, Numerical Methods for Differential Equations, CRC Press, New York, 1996.
  7. J. D. Faires, R. L. Burden, Initial-Value Problems for ODEs, Dublin City University, 2012.
  8. S. O. Fatunla, Numerical Methods for Initial Value Problems in Ordinary Differential Equations, Academic Press, Inc., New York, 1988.
  9. C. V. D. Forrington, Extensions of the predictor-corrector method for the solution of systems of ordinary differential equations, Comput. J. 4 (1961), 80-84.
  10. C. W. Gear, Numerical Value Problems in ODEs, Prentice-Hall, Inc., New Jersey, USA, 1971.
  11. C. W. Gear, K. W. Tu, The effect of variable mesh size on the stability of multistep methods, SIAM J. Numer. Anal. 11 (1974), 1025-1043.
  12. C. W. Gear, D. S. Watanabe, Stability and convergence of variable order multistep methods, SIAM J. Numer. Anal. 11 (1974), 1044-1058.
  13. E. Hairer, S. P. Norsett, G. Wanner, Solving ordinary differential equations I, Springer Heidelberg Dordrecht, New York, 2009.
  14. M. I. Hazizah, B. I. Zarina, Diagonally implicit block backward differentiation formula with optimal stability properties for stiff ordinary differential equations, Symmetry, 11 (2019), 1342.
  15. F. T. Krogh, A variable step variable order multistep method for the numerical solution of ordinary differential equations, Information Processing 68 North-Holland, Amsterdam, 194-199, 1969.
  16. F. T. Krogh, Algorithm for changing the step size, SIAM J. Num. Anal. 10 (1973), 949-965.
  17. F. T. Krogh, Changing step size inthe integration of differential equations using modified divided differences, Proceedings of the Conference on the Num. Sol. of ODE, Lecture Notes in Math Vol. 362, 22-71, 1974.
  18. J. D. Lambert, Computational Methods in Ordinary Differential Equations, John Wiley & Sons, Inc., New York, 1973.
  19. J. D. Lambert, Numerical Methods for Ordinary Differential Systems, John Wiley & Sons, Inc., New York, 1991.
  20. C. B. Moler, Numerical Computing with MATLAB, SIAM, USA, 2004.
  21. J. G. Oghonyon, S. A. Okunuga, N. A. Omoregbe, O. O. Agboola, A computational approach in estimating the amount of pond and determining the long time behavioural representation of pond pollution”, Global Journal of Pure and Applied Mathematics, Vol. 11, 2773-2786, 2015.
  22. J. G. Oghonyon, J. Ehigie, S. K. Eke, Investigating the convergence of some selected properties on block predictor-corrector methods and its applications, J. Eng. Appl. Sci. 11 (2017), 2402-2408.
  23. J. G. Oghonyon, O. A. Adesanya, H. Akewe, H. I. Okagbue, Softcode of multi-processing Milne’s device for estimating first-order ordinary differential equations, Asian J. Sci. Res. 11 (2018), 553-559.
  24. J. G. Oghonyon, O. F. Imaga, P. O. Ogunniyi, The reversed estimation of variable step size implementation for solving nonstiff ordinary differential equations, Int. J. Civil Eng. Technol. 9 (2018), 332-340.
  25. J. G. Oghonyon, S. A. Okunuga, H. I. Okagbue, Expanded trigonometrically matched block variable-step-size technics for computing oscillating vibrations, Lecture Notes in Engineering and Computer Science, Vol. 2239, 552-557, 2019.
  26. P. Piotrowsky, Stability, consistency and convergence of variable k-step methods for numerical integration of large systems of ordinary differential equations, Lecture Notes in Math., Vol. 109, 221—227, 1969.
  27. S. E. Ramin, Numerical Methods for Engineers and Scientists Using MATLAB®, CRC Press, London, 2017.
  28. P. M. Shankar, Differential Equations: A problem solving approach based on MATLAB®, CRC Press, USA, 2018.