The EOQ Model: A Differential Cyclic System for Calculating Economic Order Quantity

Main Article Content

Rabha Ibrahim, Samir Hadid

Abstract

The EOQ model determines the quantity that minimizes the total sum of all cost functions. We suggest a common structure for economic order quantity type non-linear differential models with costs functions with respect to time in a cyclic period. For this model, we analyze the related optimization problem and develop a relaxed method for determining a bounded interval containing the optimal cycle length. Also for a special class of transportation functions, we study these consequences and introduce algorithms to calculate the optimal size and the corresponding optimal order stage.

Article Details

References

  1. R. W. Grubbstrom, Modelling production opportunities an historical overview, Int. J. Product. Econ. 41 (1995), 1-14.
  2. A Caplin, J. Leahy, John, Economic Theory and the World of Practice: A Celebration of the (S, s) Model, J. Econ. Persp. 24 (1)(2010), 183-201.
  3. B. Malakooti, Operations and Production Systems with Multiple Objectives (2013). John Wiley & Sons.
  4. M.Holmbom, A. Segerstedt, Economic Order Quantities in production: From Harris to Economic Lot Scheduling Problems, Int. J. Product. Econ. 155 (2014) , 82-90.
  5. A. G. Lagodimos, et al., The discrete-time EOQ model: Solution and implications, Eur. J. Oper. Res. 266 (2018) ,112-121.
  6. R. W. Ibrahim, Maximize minimum utility function of fractional cloud computing system based on search algorithm utilizing the Mittag-Leffler sum, Int. J. Anal. Appl. 16(1) (2018), 125-136.
  7. R. W. Harris, How Many Parts to Make at Once, Operat. Res. 38 (6)(1990), 947.
  8. G. Mahata, P Mahata, Analysis of a fuzzy economic order quantity model for deteriorating items under retailer partial trade credit financing in a supply chain, Math. Comput. Model. 53 (2011), 1621-1636.
  9. S.G. Ferreira, The existence and uniqueness of the minimum norm solution to certain linear and nonlinear problems, Signal Proc. 55 (1996), 137-139.