Cubic Graphs with Application
Main Article Content
Abstract
We introduce certain concepts, including cubic graphs, internal cubic graphs, external cubic graphs, and illustrate these concepts by examples. We deal with fundamental operations, Cartesian product, composition, union and join of cubic graphs. We discuss some results of internal cubic graphs and external cubic graphs. We also describe an application of cubic graphs.
Article Details
References
- M. Akram and W.A. Dudek, Interval-valued fuzzy graphs, Comput. Math. Appl., 61(2) (2011) 289-299.
- M. Akram, Interval-valued fuzzy line graphs, Neural Comput. Appl., 21 (2012) 145-150.
- M. Akram and B. Davvaz, Strong intuitionistic fuzzy graphs, Filomat, 26(1) (2012) 177-196
- M. Akram, Bipolar fuzzy graphs, Inf. Sci., 181 (2011) 5548-5564.
- M. Akram, Bipolar fuzzy graphs with applications, Knowl.based Syst., 39 (2013) 1-8.
- P. Bhattacharya, Some remarks on fuzzy graphs, Pattern Recognition Lett., 6 (1987) 297-302.
- R.A. Borzooei and H. Rashmanlou, Cayley interval-valued fuzzy threshold graphs, U.P.B. Sci. Bull., Ser. A, 78(3) (2016) 83-94.
- F. Buckley, Self-centered graphs, Ann. N.Y. Acad. Sci., 576 (1989) 71-78.
- Y.B. Jun, C.S. Kim and M.S. Kang, Cubic subalgebras and ideals of BCK/BCI-algebras, Far East J. Math. Sci., 44 (2010) 239-250.
- Y.B. Jun, K.J. Lee and M.S. Kang, Cubic structures applied to ideals of BCI-algebras, Comput. Math. Appl., 62(9) (2011) 3334-3342.
- Y.B. Jun, G. Muhiuddin, M.A. Oztürk and E.H. Roh, Cubic soft ideals in BCK/BCI-algebras, J. Comput. Anal. Appl., 22(5) (2017) 929-940.
- Y.B. Jun, C.S. Kim and K.O. Yang, Cubic sets, Ann. Fuzzy Math. Inf., 4(1) (2012) 83-98.
- J.G. Kang and C.S. Kim, Mappings of cubic sets, Commun. Korean Math. Soc., 31(3) (2016) 423-431.
- A. Kauffman, Introduction a la Theorie des Sous-emsembles Flous, Masson et Cie, 1 (1973).
- M. Khan, Y.B. Jun, M. Gulistan, N. Yaqoob, The generalized version of Jun's cubic sets in semigroups, J. Intell. Fuzzy Syst., 28(2) (2015) 947-960.
- S.N. Mishra, H. Rashmanlou and A. Pal, Coherent category of interval-valued intuitionistic fuzzy graphs, J. Mult.-Val. Log. Soft Comput., 29(3-4) (2017) 355-372.
- J.N. Mordeson and P.S. Nair, Fuzzy graphs and fuzzy hypergraphs, Physica Verlag, Heidelberg (2001).
- G. Muhiuddin, S.S. Ahn, C.S. Kim and Y.B. Jun, Stable cubic sets, J. Comput. Anal. Appl., 23(5) (2017) 802-819.
- M. Pal, S. Samanta and H. Rashmanlou, Some results on interval-valued fuzzy graphs, Int. J. Comput. Sci. Electr. Eng., 3(3) (2015) 2320-4028.
- R. Parvathi, M. G. Karunambigai and K. Atanassov, Operations on intuitionistic fuzzy graphs, Proc. IEEE Int. Conf. Fuzzy Syst., (2009) 1396-1401.
- T. Pramanik, M. Pal and S. Mondal, Interval-valued fuzzy threshold graph, Pac. Sci. Rev. A: Nat. Sci. Eng., 18(1) (2016) 66-71.
- T. Pramanik, S. Samanta and M. Pal, Interval-valued fuzzy planar graphs, International J. Mach. Learn. Cybern., 7(4) (2016) 653-664.
- A. Rosenfeld, Fuzzy graphs, Fuzzy sets and their applications, Academic Press, New York, (1975) 77-95.
- S. Sahoo and M. Pal, Product of intuitionistic fuzzy graphs and degree, J. Intell. Fuzzy Syst., 32(1) (2017) 1059-1067.
- M.S. Sunitha and K. Sameena, Characterization of g-self centered fuzzy graphs, J. Fuzzy Math., 16 (2008) 787-791.
- S. Vijayabalaji and S. Sivaramakrishnan, A cubic set theoretical approach to linear space, Abstr. Appl. Anal., 2015 (2015) Article ID 523129 8 pages.
- L.A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965) 338-353.