On Rough Fuzzy Prime Ideals in Left Almost Semigroups

Main Article Content

Ahmed Elmoasry

Abstract

In this paper we shall introduce the notion of rough prime ideals and rough fuzzy prime ideals in LA-semigroups. We proved that the lower and the upper approximation of a prime ideal is a prime ideal and we also proved that a fuzzy subset f of an LA-semigroup S is a fuzzy prime ideal of S iff fλ≠∅ (fλs≠∅) is a prime ideal of S for every λ∈[0, 1].

Article Details

References

  1. M. Aslam, M. Shabir, N. Yaqoob, Roughness in left almost semigroups, J. Adv. Res. Pure Math. 3 (3) (2011), 70-88.
  2. M. Banerjee, Roughness of a fuzzy set, Inform. Sci, 93 (1996), 235-246.
  3. R. Biswas, S. Nanda, Rough groups and rough subgroups, Bull. Polish Acad. Sci. Math. 42 (1994), 251-254.
  4. F. Bouaziz, N. Yaqoob, Rough hyperfilters in po-LA-semihypergroups, Discrete Dyn. Nat. Soc. 2019 (2019), 8326124.
  5. D. Dubois, H. Prade, Rough fuzzy sets and fuzzy rough sets, Int. J. General Syst. 17 (2-3) (1990), 191-209.
  6. A. Elmoasry, N. Yaqoob, m-Polar fuzzy hyperideals in LA-semihypergroups, Int. J. Anal. Appl. 17(3) (2019), 329-341.
  7. M. Gulistan, A. Elmoasry, N. Yaqoob, N -version of the neutrosophic cubic set: application in the negative influences of Internet, J. Supercomput. (2021). https://doi.org/10.1007/s11227-020-03615-1.
  8. M. Gulistan, N. Yaqoob, A. Elmoasry, J. Alebraheem, Complex bipolar fuzzy sets: an application in a transport's company, J. Intell. Fuzzy Syst. 40(3) (2021), 3981-3997.
  9. Y. B. Jun, Roughness of ideals in BCK-algebras, Sci. Math. Jpn. 57 (1) (2003), 165-169.
  10. M. A. Kazim, M. Naseerudin, On almost-semigroups, Alig. Bull. Math. 2 (1972), 1-7.
  11. M. M. Khalaf, A. Elmoasry, Nanogeneralized-closed sets and slightly nanoseparation axioms, Glob. J. Pure Appl. Math. 11(2) (2015), 123-130.
  12. N. Kuroki, P.P. Wang, The lower and upper approximations in a fuzzy group, Inform. Sci. 90 (1996), 203-220.
  13. N. Kuroki, J. N. Mordeson, Structure of rough sets and rough groups, J. Fuzzy Math. 5 (1) (1997), 183-191.
  14. N. Kuroki, Rough ideals in semigroups, Inform. Sci. 100 (1997), 139-163.
  15. N. Kuroki, Fuzzy bi-ideals in Semigroups. Comment. Math. Univ. St. Pauli, 27 (1979), 17-21.
  16. N. Kuroki, On fuzzy ideals and fuzzy bi-ideals in semigroups, Fuzzy Sets Syst. 5 (1981), 203-215.
  17. J. Ma, Fuzzy Algebra, Xueyuan Press, Beijing, 1989.
  18. Q. Mushtaq, Left almost semigroups, M. Phil. Dissertation, Quaid-i-Azam University, Islamabad, 1978.
  19. Q. Mushtaq, S. M. Yusuf, On LA-semigroups, Alig. Bull. Math. 8 (1978), 65-70.
  20. Q. Mushtaq, S. M. Yusuf, On locally associative LA-semigroups, J. Nat. Sci. Math. 19 (1979), 57-62.
  21. Q. Mushtaq, Abelian groups defined by LA-semigroups, Stud. Sci. Math. Hunger, 18 (1983), 427-428.
  22. Q. Mushtaq, M. S. Kamran, On LA-semigroups with weak associative law, Sci. Sci. Khyb. 1(11) (1989), 69-71.
  23. Q. Mushtaq, M. Iqbal, Partial ordering and congruences on LA-semigroups, Indian J. Pure Appl. Math. 22(4) (1991), 331-336.
  24. Q. Mushtaq, M. Khan, Ideals in AG-band and AG*-groupoid, Quasigroups Related Syst. 14 (2006), 207-215.
  25. Q. Mushtaq, M. Khan, M-Systems in LA-Semigroups, Southeast Asian Bull. Math. 33 (2009), 321-327.
  26. Z. Pawlak, Rough sets, Int. J. Comput. Inform. Sci. 11 (1982), 341-356.
  27. A. Rosenfeld, Fuzzy groups. J. Math. Anal. Appl. 35 (1971), 512-517.
  28. S. Tariq, A. Elmoasry, S. I. Batool, M. Khan, Quantum harmonic oscillator and schrodinger paradox based nonlinear confusion component, Int. J. Theor. Phys. 59(11) (2020), 3558-3573.
  29. Q. M. Xiao, Z. L. Zhang, Rough prime ideals and rough fuzzy prime ideals in semigroups, Inform. Sci. 176 (2006), 725-733.
  30. N. Yaqoob, Approximations in left almost polygroups, J. Intell. Fuzzy Syst. 36(1) (2019), 517-526.
  31. L. A. Zadeh, Fuzzy sets. Inform. Control, 8 (1965), 338-353.