Iterative Schemes for Triequilibrium-Like Problems

Main Article Content

Misbah Iram Bloach
Muhammad Aslam Noor
Khalida Inayat Noor

Abstract

In this work, we present a new class of equilibrium problems, termed as triequilibrium-like problems with trifunction in invexity settings. Classical varilunational-like inequalities and equilibrium-like problems can be obtained as specific variants of triequilibrium-like problems. Certain new iterative methods are proposed and examined for the solution of triequilibrium-like problems by using auxiliary principle technique. Convergence analysis of these proposed methods is examined under some mild conditions.

Article Details

References

  1. F. Alvarez, On the minimization property of a second order dissipative system in Hilbert space, SIAM J. Control Optim. 38(2000), 1102-1119.
  2. F. Alvarez and H. Attouch, An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator damping, Set-Valued Anal. 9(2001), 3-11.
  3. A. Ben-Israel and B. Mond, What is invexity? J. Austral. Math. Soc. Ser. B. 28 (1986), 1-9.
  4. M.I. Bloach and M.A. Noor, Perturbed mixed variational-like inequalities, AIMS Math. 5(3)(2019), 2153-2162.
  5. E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student. 63(1994), 123-145.
  6. R. Glowinski, J. L. Lions and R. Tremolieres, Numerical analysis of variational inequalities, North-Holland, Amsterdam, 1981.
  7. F. Giannessi, A. Maugeri and P. M. Pardalos, Equilibrium Problems: Nonsmooth Optimization and Variational inequality Models, Kluwer Academic Publishers, Dordrecht, Holland, 2001.
  8. M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl. 80(1981), 545-550.
  9. J. L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math. 20(1967), 493-512.
  10. S.R. Mohan and S.K. Neogy, On invex set and preinvex functions, J. Math. Anal. Appl. 189 (1995), 901-908.
  11. B.B. Mohsen, M.A. Noor, K.I. Noor, and M. Postolache, Strongly convex functions of higher order involving bifunction, Mathematics, 7(11)(2019), 1028.
  12. M. A. Noor and W. Oettli, On general nonlinear complementarity problems and quasi-equilibria, Le Mathematiche, 49 (1994), 313-331.
  13. M. A. Noor, Variational-like inequalities, Optimization, 30(1994), 323-330.
  14. M. A. Noor, Proximal methods for mixed quasi variational inequalities, J. Optim. Theory Appl. 115(2002), 447-452.
  15. M. A. Noor, M. Akhter and K. I. Noor, Inertial proximal method for mixed quasi variational inequalities, Nonlinear Funct. Anal. Appl. 8(2003), 489-496.
  16. M. A. Noor, Fundamentals of mixed quasi variational inequalities, Int. J. Pure. Appl. Math. 15(2004), 137-250.
  17. M. A. Noor and K. I. Noor, On equilibrium problems, Appl. Math. E-Notes. 4(2004), 125-132.
  18. M. A. Noor, Mixed quasi invex equilibrium problems, Int. J. Math. Sci. 57(2004), 3057-3067.
  19. M. A. Noor, Auxiliary principle technique for equilibrium problems, J. Optim. Theory. Appl. 122(2004), 371-386.
  20. M. A. Noor, Some developments in general variational inequalities, Appl. Math. Comput. 251(2004), 199-277.
  21. M. A. Noor, Invex equilibrium problems, J. Math. Anal. Appl. 302(2005), 463-475
  22. M. A. Noor, Fundamentals of equilibrium problems, Math. Inequal. Appl. 9 (2006), 529-566.
  23. M. A. Noor, K. I. Noor and V. Gupta, On equilibrium- like problems, Appl. Anal. 86(2007), 807-818.
  24. M. A. Noor, K. I. Noor and M.I Baloch, Auxiliary principle technique for strongly mixed variational-like inequalities, U.P.B. Sci. Bull. Ser. A. 80(2018), 93-100.
  25. M. A. Noor, K. I. Noor, A. Hamdi and E. H. El-shemas, On difference of two monotone operators, Optim. Lett. 3(2009), 329.
  26. M. A. Noor, K. I. Noor and M. Th. Rassias, New trends in general variational inequalitis, Acta Appl. Math. 170(1)(2020), 981-1046.
  27. J. Parida and A. Sen, A variational-like inequality for multifunctions with applications, J. Math. Anal. Appl., 124(1987), 73-81.
  28. G. Stampacchia, Formes bilineaires coercitives sur les ensembles convexes, C. R. Acad. Sci. Paris, 258(1964), 4413-4416.
  29. T. Weir and V. Jeyakumar, A class of nonconvex functions and mathematical programming, Bull. Austral. Math. Soc. 38(1988), 177-189.
  30. T. Weir and B. Mond, Preinvex functions in multiple objective optimization, J. Math. Anal. Appl. 136(1988), 29-28.
  31. D.L. Zhu and P. Marcotte, Cocoercivity and its role in the convergence of iterative schemes for solving variational inequalities, SIAM J. Optim. 6(3)(1996), 714-726.