Convergence Theorems of an Implicit Iterates with Errors for Non-Lipschitzian Asymptotically Quasi-Nonexpansive Type Mappings

Main Article Content

G. S. Saluja

Abstract

The aim of this paper is to study an implicit iterative process with errors for two finite families of non-Lipschitzian asymptotically quasi-nonexpansive type mappings in the framework of real Banach spaces. In this paper, we have obtained a necessary and sufficient condition to converge to common fixed points for proposed scheme and mappings and also obtained strong convergence theorems by using semi-compactness and Condition (B').

Article Details

References

  1. C.E. Chidume, N. Shahzad, Strong convergence of an implicit iteration process for a finite family of nonexpansive mappings, Nonlinear Anal., TMA, 62 (2005), no. 6, 1149-1156.
  2. J.B. Diaz, F.T. Metcalf, On the structure of the set of subsequential limit points of successive approximations, Bull. Amer. Math. Soc. 73 (1967), 516-519.
  3. H. Fukhar-ud-din, S.H. Khan, Convergence of two-step iterative scheme with errors for two asymptotically nonexpansive mappings, Int. J. Math. Math. Sci. (2004), no. 37-40, 1965-1971.
  4. H. Fukhar-ud-din, A.R. Khan, Convergence of implicit iterates with errors for mappings with unbounded domain in Banach spaces, Int. J. Math. Math. Sci. 10 (2005), 1643-1653.
  5. M.K. Ghosh, L. Debnath, Convergence of Ishikawa iterates of quasinonexpansive mappings, J. Math. Anal. Appl. 207 (1997), 96-103.
  6. K. Goebel, W.A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972), 171-174.
  7. S.H. Khan, W. Takahashi, Approximating common fixed points of two asymptotically nonexpansive mappings, Sci. Math. Jpn. 53 (2001), no. 1, 143-148.
  8. W.A. Kirk, Fixed point theorems for non-lipschitzian mappings of asymptotically nonexpansive type, Israel J. Math. 17 (1974), 339-346.
  9. L.S. Liu, Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl. 194 (1995), no. 1, 114-125.
  10. Q.H. Liu, Iterative sequences for asymptotically quasi-nonexpansive mappings, J. Math. Anal. Appl. 259 (2001), 1-7.
  11. Q.H. Liu, Iterative sequences for asymptotically quasi-nonexpansive mappings with error member, J. Math. Anal. Appl. 259 (2001), 18-24.
  12. W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510.
  13. W.V. Petryshyn, T.E. Williamson, Strong and weak convergence of the sequence of successive approximations for quasi-nonexpansive mappings, J. Math. Anal. Appl. 43 (1973), 459-497.
  14. X. Qin, S.M. Kang, R.P. Agarwal, On the convergence of an implicit iterative process for generalized asymptotically quasi-nonexpansive mappings, Fixed Point Theory Appl. (2010), Article ID 714860, 19pp. (doi:10.1155/2010/74860)
  15. D.R. Sahu, J.S. Jung, Fixed point iteration processes for non-Lipschitzian mappings of asymptotically quasi-nonexpansive type, Int. J. Math. Math. Sci. 33 (2003), 2075-2081.
  16. J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Astra. Math. Soc. 43 (1991), no. 1, 153-159.
  17. N. Shahzad, A. Udomene, Approximating common fixed points of two asymptotically quasi-nonexpansive mappings in Banach spaces, Fixed Point Theory Appl. (2006), Article ID 18909, 10pp.
  18. T. Shimizu, W. Takahashi, Strong convergence theorem for asymptotically nonexpansive mappings, Nonlinear Anal. 26 (1996), no. 2, 265-272.
  19. Z. Sun, Strong convergence of an implicit iteration process for a finite family of asymptotically quasi-nonexpansive mappings, J. Math. Anal. Appl. 286 (2003), no. 1, 351-358.
  20. K.K. Tan, H.K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl. 178 (1993), 301-308.
  21. R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math. 58 (1992), 486-491.
  22. H.K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991), no. 12, 1127-1138.
  23. Y. Xu, Ishikawa and Mann iterative process with errors for nonlinear strongly accretive operator equations, J. Math. Anal. Appl. 224 (1998), no. 1, 91-101.
  24. H.K. Xu, R.G. Ori, An implicit iteration process for nonexpansive mappings, Numer. Funct. Anal. Optim. 22 (2001), no. 5-6, 767-773.