Tripled Fixed Point Results for T-Contractions on Abstract Metric Spaces
Main Article Content
Abstract
In this paper we introduce the notion of T-contraction for tripled fixed points in abstract metric spaces and obtain some tripled fixed point theorems which extend and generalize well-known comparable results in the literature. To support our results, we present an example and an applications to integral equations.
Article Details
References
- M. Abbas, G. Jungck, Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl. 341 (2008) 416-420.
- M. Abbas, B.E. Rhoades, Fixed and periodic point results in cone metric spaces, Appl. Math. Lett. 22 (2009) 511-515.
- H. Aydi, M. Abbas, W. Sintunavarat, P. Kumam, Tripled fixed point of W-compatible mappings in abstract metric spaces, Fixed Point Theory Appl. 2012, 2012:134.
- H. Aydi, E. Karapinar, M. Postolache, Tripled coincidence point theorems for weak φ- contractions in partially ordered metric spaces, Fixed Point Theory Appl. (in press).
- S. Banach, Sur les op ´erations dans les ensembles abstraits et leur application aux ´equations int ´egrales, Fund. Math. J. 3 (1922) 133-181.
- A. Beiranvand, S. Moradi, M. Omid, H. Pazandeh, Two fixed point theorems for special mappings, arxiv:0903.1504v1 math FA. (2009).
- V. Berinde, M. Borcut, Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces, Nonlinear Anal. 74 (2011) 4889-4897.
- T. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006) 1379-1393.
- L.B. Ciri ´c, A generalization of Banach contraction principle, Proc. Amer. Math. Soc. 45 ´ (1974) 267-273.
- M. Filipovi ´c, L. Paunovi ´c, S. Radenovi ´c, M. Rajovi ´c, Remarks on “Cone metric spaces and fixed point theorems of T-Kannan and T-Chatterjea contractive mappings”, Math. Comput. Modelling 54 (2011) 1467-1472.
- K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, 1985.
- L.G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332 (2007) 1467-1475.
- G. Jungck, Commuting maps and fixed points, Amer. Math. Monthly 83 (1976) 261-263.
- V. Lakshmikanthama, L. Ciri ´c, Coupled fixed point theorems for nonlinear contractions in ´ partially ordered metric spaces, Nonlinear Anal. 70 (2009) 4341-4349.
- S. Moradi, Kannan fixed-point theorem on complete metric spaces and generalized metric spaces depended an another function, Int. J. Math. Anal. 5 (47) (2011) 2313-2320.
- J.R. Morales, E. Rojas, Cone metric spaces and fixed point theorems of T-Kannan contractive mappings, Int. J. Math. Anal. 4 (4) (2010) 175-184.
- E.M. Mukhamadiev, V.J. Stetsenko, Fixed point principle in generalized metric space, Izvestija AN Tadzh. SSR, fiz.-mat.igeol.-chem.nauki. 10 (4) (1969) 8-19 (in Russian).
- A.I. Perov, The Cauchy problem for systems of ordinary differential equations, Approximate Methods of Solving Differential Equations, Kiev. Nauk. Dum. (1964) 115-134 (in Russian).
- H. Rahimi, B.E. Rhoades, S. Radenovi ´c, G. Soleimani Rad, Fixed and periodic point theorems for T-contractions on cone metric spaces, Filomat 27 (5) (2013) 881-888.
- H. Rahimi, G. Soleimani Rad, Fixed point theory in various spaces, Lambert Academic Publishing (LAP), Germany, 2013.
- H. Rahimi, G. Soleimani Rad, New fixed and periodic point results on cone metric spaces, Journal of Linear and Topological Algebra 1 (1) (2012) 33-40.
- S. Rezapour, R. Hamlbarani, Some note on the paper cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 345 (2008) 719-724.
- B.E. Rhoades, A comparison of various definition of contractive mappings, Trans. Amer. Math. Soc. 266 (1977) 257-290.
- F. Sabetghadam, H.P. Masiha, A.H. Sanatpour, Some coupled fixed point theorems in cone metric space, Fixed Point Theory Appl. 2009 (2009), Article ID 125426, 8 pages.
- B. Samet, C. Vetro, Coupled fixed point, f-invariant set and fixed point of N-order, Ann. Funct. Anal. 1 (2) (2010) 46-56.
- P.P. Zabrejko, K-metric and K-normed linear spaces: survey, Collect. Math. 48 (1997) 825- 859.