Title: On The Integral Representation of Strictly Continuous Set-Valued Maps
Author(s): Anaté K. Lakmon, Kenny K. Siggini
Pages: 114-120
Cite as:
Anaté K. Lakmon, Kenny K. Siggini, On The Integral Representation of Strictly Continuous Set-Valued Maps, Int. J. Anal. Appl., 9 (2) (2015), 114-120.

Abstract


Let T be a completely regular topological space and C(T) be the space of bounded, continuous real-valued functions on T. C(T) is endowed with the strict topology (the topology generated by seminorms determined by continuous functions vanishing at in_nity). R. Giles ([13], p. 472, Theorem 4.6) proved in 1971 that the dual of C(T) can be identi_ed with the space of regular Borel measures on T. We prove this result for positive, additive set-valued maps with values in the space of convex weakly compact non-empty subsets of a Banach space and we deduce from this result the theorem of R. Giles ([13], theorem 4.6, p.473).

Full Text: PDF

 

References


  1. R. C. Buck, Bounded continuous functions on locally compact space, Michigan Math. J. 5 (1958), 95–104.

  2. R. C. Buck, operator algebras and dual spaces, Proc. Amer. Math. Soc. 3.681– 687 (1952).

  3. BOURBAKI, El´ements de Maths. Livre VI Int´egration-Chp. IX, Ed. Hermann, Paris 1969.

  4. A. Choo, strict topology on spaces of continuous vector-valued functions, Canad. J. Math. 31 (1979), 890–896.

  5. A. Choo, Separability in the strict topology, J. Math. Anal. Appl. 75 (1980), 219–222.

  6. H. S Collins, On the space l∞(S), with the stict topology, Math. Zeitschr. 106, 361–373 (1968).

  7. H. S. Collins and J. R. Dorroh, Remarks on certain function spaces, Math. Ann., 176, (1968), 157–168 .

  8. J. B. Conway, the strict topology and compactness in the space of measures, Bull. Amer. Math. Soc. 72, (1966), 75–78 .

  9. , J. Diestel, Sequences and Series in Banach spaces, Graduate Texts in Math., vol.92, Springer-Verlag, 1984.

  10. Drewnowsky, Topological Rings of Sets, Continuous Set Functions, Integration. III, Bull. Acad. Polon. Sci., S´er. Sci. Math., Astronom. et Phys., 20 (1972), 441–445.

  11. N. Dunford and J. Schwartz, Linear operators Part I, New York: Interscience 1958.

  12. R. A. Fontenot, Strict topologies for vector-valued functions, Canadian. J. Math. 26 (1974), 841–853.

  13. R. Giles, A Generalization of the Strict Topology, Trans. Amer. Math. Soc. 161(1971), 467–474.

  14. D. Gulick, The σ-compact-open topology and its relatives, Math. Scand.. 30 (1972), 159–176.

  15. J. Hoffman-J¨orgenson, A generalization of strict topology, Math. Scand. 30 (1972), 313–323.

  16. L. H¨ormander, Sur la fonction d’appui des ensembles convexes dans un espace localement convexe, Arkiv F¨or MATEMATIK. 3 nr 12 (1954).

  17. A. K. Katsaras, On the strict topology in the non-locally convex setting II, Acta. Math. Hung. 41 (1-2) (1983), 77–88.

  18. A. K. Katsaras, Some locally convex spaces of continuous vector-valued functions over a completely regular space and their duals, Trans. Amer. Math. Soc. 216 (1979), 367–387.

  19. L. A. Khan, The strict topology on a space of vector-valued functions, Proc. Edinburgh Math. Soc., 22 (1979), 35–41.

  20. G. K¨othe, Topological Vector spaces I Second printing, Springer-Verlag, NewYork, 1983.

  21. R. Pallu De La Barriere, Publications Math´ematiques de l’Universit´e Pierre et Marie Curie No33.

  22. F. D. Sentilles, Bounded continuous functions on a completely regular space, Trans. Amer. Math. Soc., 168 (1972), 311–336.

  23. K. K. Siggini, Narrow Convergence in Spaces of Set-valued Measures, Bull. of The Polish Acad. of Sc. Math. Vol. 56, N◦1, (2008).

  24. K. K. Siggini, Sur les propri´et´es de r´egularit´e des mesures vectorielles et multivoques sur les espaces topologiques g´en´eraux, Th`ese de Doctorat de l’Universit´e de Paris 6.

  25. C. Todd, Stone-Weierstrass theorems for the strict topolgy, Proc. Amer. Math. Soc. 16 (1965), 657–659.

  26. A. C. M. Van Rooij, Tight functionals and the strict topology, Kyungpook Math.J.7 (1967), 41–43.

  27. J. Wells, Bounded continuous vector-valued functions on a locally compact space, Michigan Math. J. 12 (1965), 119–126.

  28. X. Xiaoping, C. Lixin, L. Goucheng, Y. Xiaobo, Set valued measures and integral representation, Comment.Math.Univ.Carolin. 37,2 (1996)269–284