Title: Exponential Decay and Numerical Solution for a Timoshenko System with Delay Term in the Internal Feedback
Author(s): C. A. Raposo, J. A. D. Chuquipoma, J. A. J. Avila, M. L. Santos
Pages: 1-13
Cite as:
C. A. Raposo, J. A. D. Chuquipoma, J. A. J. Avila, M. L. Santos, Exponential Decay and Numerical Solution for a Timoshenko System with Delay Term in the Internal Feedback, Int. J. Anal. Appl., 3 (1) (2013), 1-13.

Abstract


In this work we study the asymptotic behavior as t → ∞ of the solution for the Timoshenko system with delay term in the feedback. We use the semigroup theory for to prove the well-posedness of the system and for to establish the exponential stability. As far we know, there exist few results for problems with delay, where the asymptotic behavior is based on the Gearhart- Herbst-Pruss-Huang theorem to dissipative system. See [4], [5], [6]. Finally, we present numerical results of the solution of the system.

Full Text: PDF

 

References


  1. A. Soufyane, A. Wehbe, Exponential stability for the Timoshenko beam by a locally distributed damping, Electron. J. Differ. Equ. 29 (2003), 1-14. Google Scholar

  2. J. E. M. Rivera, R. Racke, Timoshenko systems with indefinite damping. J. Math. Anal. Appl. 341 (2008), 1068-1083. Google Scholar

  3. F. Amar-Khodja. A. Benabdallah, J. E. M. Rivera, R. Racke, Energy decay for Timoshenko systems of memory type, J. Differ. Equ. 194 (2003), 82-115. Google Scholar

  4. L. Gearhart, Spectral Theory for the Contractions Semigroups on Hilbert Spaces. Trans. of the American Mathematical Society . 236 (1978), 385-349. Google Scholar

  5. F. Huang, Characteristic Conditions for Exponential Stability of the Linear Dynamical Systems in Hilbert Spaces. Annals of Differential Equations. 1 (1985), 43-56. Google Scholar

  6. J. Pr¨uss, On the Spectrumm of C0-semigroups. Trans. of the American Mathematical Society 284 (1984) 847-857. Google Scholar

  7. C. A. Raposo, J. Ferreira, M. L. Santos, N. N. Castro. Exponential Stability for the Timoshenko System with two weak Dampings. Applied Mathematics Letters. 18 (2010), 535-541. Google Scholar

  8. B. Said-Houari, Y. Laskri. A stabilit result of a Timoshenko system with a delay term in the internal feedback. Applied Mathematics and Computation . 217 (2010), 2857-2869. Google Scholar

  9. C. Abdallah, P. Dorato, J. Benitez-Read, R. Byrne. Delayed Positive Feedback Can Stabilize Oscillatory System. ACC, San Francisco (1993) 3016-3107. Google Scholar

  10. L. H Suh, Z. Bien. Use of time delay action in the controller designe. IEEE Trans. Autom. Control. 25 (1980) 600-603. Google Scholar

  11. R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975. Google Scholar

  12. S. Nicaise, J. Valein. Stabilization of second order evolution eqaution with unbounded feedback with delay. ESAIM Control. Optim. Calc. Var. 16 (2010). Google Scholar

  13. Z. Liu, S. Zheng, Semigroups Associated with dissipative systems, Chapman, New Y & Hallo/CRC, New York, 1999. Google Scholar

  14. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York, 1993. Google Scholar


COPYRIGHT INFORMATION

Copyright © 2020 IJAA, unless otherwise stated.