Title: Numerical Differentiation and Integration through Aitken-Neville Schemes
Author(s): Ramesh Kumar Muthumalai
Pages: 104-111
Cite as:
Ramesh Kumar Muthumalai, Numerical Differentiation and Integration through Aitken-Neville Schemes, Int. J. Anal. Appl., 3 (2) (2013), 104-111.


Some new formulas are given to approximate higher order derivatives and integrals through Aitken-Neville iterative schemes for arbitrary spaced grids. An algorithm is given in MATLAB for numerical differentiation. Also, numerical examples are provided to study error analysis of new formulas for numerical differentiation and integration.

Full Text: PDF



  1. K. E. Atkinson, An introdction to numerical Analysis, 2 Ed, John Wiley & Sons, Newyork (1989).

  2. S.D. Conte, Carl de boor, Elementary numerical Analysis, 3 Ed, McGraw-Hill, Newyork, USA (1980).

  3. M. Dvornikov, Formulae for Numerical differentiation, JCAAM, 5 (2007), 77-88 [e-print arxiv:math.NA/0306092].

  4. B. Fornberg, Calculation of weights in finite difference formulas, SIAM Rev, Vol 40, No 3, 685-691 (1998).

  5. F.B. Hildebrand, Introduction to Numerical analysis, 2 Ed, McGraw-Hill, Newyork (1974).

  6. J.Li, General Explicit difference formulas for Numerical differentiation, J.Comp & Appl. Math, 183, 29-52 (2005).

  7. G. M. Phillips, Interpolation and approximation by polynomials, Springer-Verlag, Newyork (2003).

  8. S.S. Sastry, Introdutory methods of Numerical Analysis, 4 Ed, Prentice hall of India, New Delhi (2005).

  9. E. S¨uli & D. Mayers, An introduction to Numerical Analysis, Cambridge University Press, UK (2003).