Title: On Chebyshev Functional and Ostrowski-Grus Type Inequalities for Two Coordinates
Author(s): Atiq Ur Rehman, Ghulam Farid
Pages: 180-187
Cite as:
Atiq Ur Rehman, Ghulam Farid, On Chebyshev Functional and Ostrowski-Grus Type Inequalities for Two Coordinates, Int. J. Anal. Appl., 12 (2) (2016), 180-187.

Abstract


In this paper, we construct Chebyshev functional and Gruss inequality on two coordinates. Also we establish Ostrowski-Gruss type inequality on two coordinates. Related mean value theorems of Lagrange and Cauchy type are also given.


Full Text: PDF

 

References


  1. M.W. Alomari, New Grüss type inequalities for double integrals, Appl. Math. Comput. 228 (2014), 102-107.

  2. N. Barnett, P. Cerone, S.S. Dragomir, J. Roumeliotis and A. Sofo, A survey on Ostrowski type inequalities for twice differentiable mappings and applications. In: Inequality Theory and Applications, Nova Science Publishers, Huntington, 1 (2001) 24–30.

  3. S.S. Dragomir and Th.M. Rassias (Eds.), Ostrowski Type Inequalities and Applications in Numerical Integration, Kluwer Academic Publishers, Dordrecht, 2002.

  4. S.S. Dragomir and S. Wang, An inequality of Ostrowski-Grüss type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules, Comput. Math. 33 (1997), 15–22.

  5. G. Farid, M. Marwan, and A. U. Rehman, Fejer-Hadamard inequality for convex functions on the coordinates in a rectangle from the plane, Int. J. Analysis Appl. 10(1) (2016), 40-47.

  6. G. Grüss, ber das maximum des absoluten Betrages von 1 (b−a) 2 R b a f(x)dx R b a g(x)dx, Math. Z. 39 (1935), 215–226.

  7. S. Hussain and A. Qayyum , A generalized Ostrowski-Grüss type inequality for bounded differentiable mappings and its applications, J. Inequal. Appl. 2013 (2013) Art. ID 1.

  8. J. Jakˇ seti´ c, J. Peˇ cari´ c and Atiq ur Rehman, Cauchy means involving Chebychev functional, Proc. A. Razmadze Math. Inst. 151 (2009), 43–54.

  9. M. Matic , J. Peˇ cari´ c and N. Ujevi´ c , On new estimation of the remainder in generalized Taylor’s formula, Math. Inequal. Appl. 2(3) (1999), 343-361.

  10. A.Mcd. Mercer and P. Mercer, New proofs of the Grüss inequality, Aust. J. Math. Anal. Appls. 1(2) (2004) Art. ID 12.

  11. D.S. Mitrinovi´ c, J.E. Peˇ cari´ c, and A.M. Fink, Classical and New Inequalities in Analysis, Mathematics and Its Applications (East European Series), vol. 61, Kluwer Academic, Dordrecht, 1993.

  12. A. Ostrowski, Uber die Absolutabweichung einer differentiebaren Funktion von ihrem Integralmittelwert Comment. Math. Helv. 10 (1938) 226–227.

  13. A. M. Ostrowski, On an integral inequality. Aequationes Math. 4 (1970) 358-373.

  14. B.G. Pachpatte, On Grüss type inequalities for double integrals, J. Math. Anal. Appl. 267 (2002) 454-459.

  15. J. E. Peˇ cari´ c, On the Ostrowski generalization of ˇ Cebyˇ sev’s inequality, J. Math. Anal. Appl., 102 (1984) 479–487.

  16. A. Rafiq, N.A. Mir and F. Zafar, A generalized Ostrowski-Grüss type inequality for twice differentiable mappings and applications, JIPAM. J. Inequal. Pure Appl. Math, 7(4) (2006), Art. ID 124.