Title: Cyclic Contraction on S- Metric Space
Author(s): Animesh Gupta
Pages: 119-130
Cite as:
Animesh Gupta, Cyclic Contraction on S- Metric Space, Int. J. Anal. Appl., 3 (2) (2013), 119-130.

Abstract


In this paper we introduced the concepts of cyclic contraction on S- metric space and proved some fixed point theorems on S- metric space. Our presented results are proper generalization of Sedghi et al. [14]. We also give an example in support of our theorem.

Full Text: PDF

 

References


  1. R. Chugh, T. Kadian, A. Rani, B.E. Rhoades, Property P in G-metric spaces, Fixed Point Theory Appl. Vol. 2010, Article ID 401684.

  2. B.C. Dhage, Generalized metric spaces mappings with fixed point, Bull. Calcutta Math. Soc. 84 (1992), 329-336.

  3. S. Gahler, 2-metrische Raume und iher topoloische Struktur, Math. Nachr. 26 (1963), 115- 148.

  4. Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2006), 289C297.

  5. Z. Mustafa, H. Obiedat, F. Awawdeh, Some common fixed point theorems for mapping on complete G-metric spaces, Fixed Point Theory Appl. Vol. 2008, Article ID 189870.

  6. Z. Mustafa, A New Structure for Generalized Metric Spaces with Applications to Fixed Point Theory, Ph. D. Thesis, The University of Newcastle, Callaghan, Australia, 2005.

  7. Z. Mustafa, B. Sims, Some results concerning D-metric spaces, Proc. Internat. Conf. Fixed Point Theory and Applications, pp. 189-198, Valencia, Spain, 2003.

  8. S.V.R. Naidu , K.P.R. Rao, N. Srinivasa Rao, On the topology of D-metric spaces and the generation of D-metric spaces from metric spaces, Internat. J. Math. Math. Sci. 2004 (2004), No. 51, 2719-2740.

  9. S.V.R. Naidu, K.P.R. Rao, N. Srinivasa Rao, On the concepts of balls in a D-metric space, Internat. J. Math. Math. Sci. 2005 (2005), 133-141.

  10. S.V.R. Naidu, K.P.R. Rao, N. Srinivasa Rao, On convergent sequences and fixed point theorems in D-metric spaces, Internat. J. Math. Math. Sci. 2005 (2005), 1969-1988.

  11. S. Sedghi, K.P.R. Rao, N. Shobe, Common fixed point theorems for six weakly compatible mappings in D∗-metric spaces, Internat. J. Math. Math. Sci. 6 (2007), 225-237.

  12. S. Sedghi, N. Shobe, H. Zhou, A common fixed point theorem in D∗-metric spaces, Fixed Point Theory Appl. Vol. 2007, Article ID 27906, 13 pages.

  13. W. Shatanawi, Fixed point theory for contractive mappings satisfying ψ-maps in G-metric spaces, Fixed Point Theory Appl. Vol. 2010, Article ID 181650.

  14. S. Sedghi, N. Shobe, A. Aliouche, A generalization of fixed point theorem in S-metric spaces,Mat. Vesnik 64 (2012), 258-266.