Generalized Beta-Convex Functions and Integral Inequalities

Main Article Content

Bandar Bin-Mohsin, Muhammad Uzair Awan, Muhammad Aslam Noor, Khalida Inayat Noor, Sabah Iftikhar, Awais Gul Khan

Abstract

In this paper, we introduce the concept of generalized beta-convex functions. This new class of convex functions includes several new and previous known classes of convex functions as special cases. We derive some integral inequalities of Hermite-Hadamard type via generalized beta-convex functions. Some special cases are also discussed. Results proved in this paper can be viewed as significant new contributions in this dynamic field.

Article Details

References

  1. W. W. Breckner, Stetigkeitsaussagen fiir eine Klasse verallgemeinerter convexer funktionen in topologischen linearen Raumen. Pupl. Inst. Math. 23 (1978), 13-20.
  2. G. Cristescu and L. Lupsa, Non-connected Convexities and Applications, Kluwer Academic Publishers, Dordrecht, Holland, 2002.
  3. G. Cristescu, M. A. Noor, M. U. Awan, Bounds of the second degree cumulative frontier gaps of functions with generalized convexity, Carpathian J. Math. 31 (2) (2015), 173-180.
  4. S. S. Dragomir, Inequalities of jensen type for φ-convex functions, Fasciculi Mathematici, (2015).
  5. S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (5) (1998), 91-95.
  6. S. S. Dragomir, C. E. M. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, Victoria University, Australia, 2000.
  7. S. S. Dragomir, J. Pecaric, L. E. Persson, Some inequalities of Hadamard type. Soochow J. Math. 21 (1995), 335-341.
  8. Z.B. Fang, R. Shi, On the (p,h)-convex function and some integral inequalities, J. Inequal. Appl. 2014 (2014), Article ID 45.
  9. E. K. Godunova, V. I. Levin, Neravenstva dlja funkcii sirokogo klassa, soderzascego vypuklye, monotonnye i nekotorye drugie vidy funkii. Vycislitel. Mat. i. Fiz. Mezvuzov. Sb. Nauc. Trudov, MGPI, Moskva. (1985) 138-142, (in Russian).
  10. I. Iscan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacettepe J. Math. Stat. 43 (6) (2014), 935-942.
  11. S. K. Khattri, Three proofs of the inequality $e
  12. W. Liu, New integral inequalities involving Beta function via p-convexity, Miskolc Math. Notes, 15 (2) (2014), 585-591.
  13. M. A. Noor, Some developments in general variational inequalites, Appl. Math. Comput. 151 (2004), 199-277.
  14. M. A. Noor, K. I. Noor, Harmonic variational inequalities, Appl. Math. Inform. Sci. 10 (2016), 1811-1814.
  15. M. A. Noor, K. I. Noor, Some implict methods for solving harmonic variational inequalities, Int. J. Anal. Appl. 12 (1) (2016), 10-14.
  16. M. V. Mihai, M. A. Noor, K. I. Noor, M. U. Awan, Some integral inequalities for harmonic h-convex functions involving hypergeometric functions. Appl. Math. Comput. 252 (2015), 257-262.
  17. M. A. Noor, M. U. Awan, K. I. Noor, Some new bounds of the quadrature formula of Gauss-Jacobi type via (p,q)-preinvex functions, Appl. Math. Inform. Sci. Lett., 5 (2) (2017), 51-56.
  18. M. A. Noor, M. U. Awan, M. V. Mihai, K. I. Noor, Hermite-Hadamard inequalities for differentiable p-convex functions using hypergeometric functions, Publications de l'nstitut Mathematique, 100 (114) (2016), 251-257.
  19. M. A. Noor, K. I. Noor, M. U. Awan, Integral inequalities for coordinated harmonically convex functions. Complex Var. Elliptic Equat. 60 (6) (2015), 776-786.
  20. M. A. Noor, K. I. Noor, M. U. Awan, S. Costache, Some integral inequalities for harmonically h-convex functions. U. P. B. Sci. Bull., Series A. 77 (1) (2015), 5-16.
  21. M. A. Noor, K. I. Noor, S. Iftikhar, Harmonic beta-preinvex functions and inequalities, Int. J. Anal. Appl. (2017) 13(2), 144-160.
  22. M. A. Noor, K. I. Noor, S. Iftikhar,Integral inequalities for differentiable relative harmonic preinvex functions, TWMS J. Pure Appl. Math. 7(1) (2016), 3-19.
  23. M. A. Noor, K. I. Noor, S. Iftikhar, Hermite-Hadamard inequalities for strongly harmonic convex functions, J. Inequal. Special Funct. 7 (3) (2016), 99-113.
  24. M. A. Noor, K. I. Noor, S. Iftikhar, Fractional integral inequalities for harmonic geometrically h-convex functions, Adv. Studies Contemp. Math. 26 (3) (2016), 447-456.
  25. M. A. Noor,K. I. Noor, S. Iftikhat, M. U. Awan, Strongly generalized harmonic convex functions and integral inequalities, J. Math. Anal. 7 (3) (2016), 66-71.
  26. M. E. Ozdemir, E. Set, M. Alomari, Integral inequalities via several kinds of convexity, Creat. Math, Inform., 20 (1) (2011), 62-73.
  27. C. E. M. Pearce, J. Pecaric, Inequalities for differentiable mappings with application to special means and quadrature formula, Appl. Math. Lett., 13 (2000), 51-55.
  28. M. Z. Sarikaya, A. Saglam, H. Yildrim, On some Hadamard-type inequalities for h-convex functons, J. Math. Inequal. 2 (2008), 335-341.
  29. E. Set, New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals, Comput. Math. Appl., 63 (7) (2012), 1147-1154.
  30. M. Tunc, E. Gov, U. Sanal, On tgs-convex function and their inequalities, Facta universitatis (NIS) Ser. Math. Inform. 30 (5) (2015), 679-691.
  31. S. Varoˇ sanec, On h-convexity, J. Math. Anal. Appl. 326 (2007), 303-311.
  32. K. S. Zhang, J. P. Wan, p-convex functions and their properties. Pure Appl. Math. 23 (1) (2007), 130-133.