Some Characterizations of Harmonic Convex Functions

Main Article Content

Muhammad Aslam Noor
Khalida Inayat Noor
Sabah Iftikhar

Abstract

In this paper, we show that the harmonic convex functions have some nice properties, which convex functions enjoy. We also discuss some basic properties of harmonic convex functions. The techniques and ideas of this paper may be a starting point for future research.

Article Details

References

  1. G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl., 335(2007), 1294-1308.
  2. M. S. Bazaraa, D. Hanif, C. M. Shetty, et al. Nonlinear Programming Theory and Algorithms (Second Edition)
  3. [M]. The United States of America: John Wiley and Sons, 1993.
  4. I. Iscan, Hermite-Hadamard type inequalities for harmonically convex functions. Hacet. J. Math. Stats., 43(6)(2014), 935-942.
  5. C. P. Niculescu and L. E. Persson, Convex Functions and Their Applications, Springer-Verlag, New York, (2006).
  6. M. A. Noor, Advanced Convex Analysis and Optimization, Lecture Notes, CIIT, (2014-2017).
  7. M. A. Noor and K. I. Noor, Harmonic variational inequalities, Appl. Math. Inf. Sci., 10(5)(2016), 1811-1814.
  8. M. A. Noor and K. I. Noor, Some implicit methods for solving harmonic variational inequalities, Inter. J. Anal. App. 12(1)(2016), 10-14
  9. M. A. Noor and K. I. Noor, Auxiliary principle techinique for variational inequalities, Appl. Math. Inf. Sci., 11(1)(2017), 165-169.
  10. M. A. Noor, K. I. Noor and M. U. Awan. Some characterizations of harmonically log-convex functions. Proc. Jangjeon. Math. Soc., 17(1)(2014), 51-61.
  11. M. A. Noor, K. I. Noor and S. Iftikhar, Hermite-Hadamard inequalities for harmonic nonconvex functions, MAGNT Research Report. 4(1)(2016), 24-40.
  12. M. A. Noor, K. I. Noor and S. Iftikhar, Integral inequalities for differentiable relative harmonic preinvex func- tions(survey), TWMS J. Pure Appl. Math. 7(1)(2016),3-19.
  13. M. A. Noor, K. I. Noor and S. Iftikhar, Integral inequalities of Hermite-Hadamard type for harmonic (h,s)-convex functions, Int. J. Anal. Appl., 11(1)(2016), 61-69.
  14. M. A. Noor, K. I. Noor, S. Iftikhar and C. Ionescu, Some integral inequalities for product of harmonic log-convex functions, U.P.B.Sci. Bull., Series A,78(4)(2016),11-19.
  15. M. A. Noor, K. I. Noor, S. Iftikhar and C. Ionescu ,Hermite-Hadmard inequalities for co-ordinated harmonic comvex functions, U.P.B.Sci. Bull., Series A,79(1)(2017),24-34.
  16. J. Pecaric, F. Proschan, and Y. L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Acdemic Press, New york, (1992).
  17. T.-Y. Zhang, Ai-P. Ji, F. Qi, Integral inequalities of Hermite-Hadamard type for harmonically quasi-convex func- tions, Proc. Jangjeon. Math. Soc., 16(3)(2013), 399-407.