Curvature Dependent Energy of Surface Curves in Minkowski Space
Main Article Content
Abstract
In this paper, we firstly introduce kinematics properties of the moving particle lying on a surface S. We assume that the particle corresponds to a different type of surface curves such that they are characterized by using the Darboux vector field W in Minkowski spacetime. Based on this result, we present geometrical understanding of the energy of the particle in each Darboux vector fields whether they lie on a spacelike surface or a timelike surface. Then, we also determine the bending elastic energy functional for the same particle on a surface S by assuming the particle has a bending feature of elastica. Finally, we prove that bending energy formula can be represented by the energy of the particle in each Darboux vector field W.
Article Details
References
- C.M. Wood, On the Energy of a Unit Vector Field, Geom. Dedicata. 64 (1997), 319-330.
- O. Gil Medrano, Relationship between volume and energy of vector fields, Differ. Geom. Appl. 15 (2001) 137-152.
- P.M. Chacon, A.M. Naveira and J.M. Weston, On the Energy of Distributions, with Application to the Quaternionic Hopf Fibrations, Monatsh. Math. 133 (2001) 281-294.
- P.M. Chacon and A.M. Naveira, Corrected Energy of Distribution on Riemannian Manifolds, Osaka J. Math. 41 (2004) 97-105.
- A. Altin, On the energy and Pseduoangle of Frenet Vector Fields in R v ?, Ukr. Math J. 63 (2011) 969-975.
- G. Kirchhoff, ber Das Gleichgewicht und die Bewegung einer elastichen Scheibe, Crelles J. 40 (1850) 51-88.
- E. Catmull and J. Clark, Recursively generated b-spline surfaces on arbitrary topological surfaces, Comput.-Aided Des. 10 (1978), 350-355.
- T. Lopez-Leon, V. Koning, K.B.S. Devaiah, V. Vitelli and A.A. Fernandez-Nieves, Frustrated nematic order in spherical geometries, Nature Phys. 7 (2011) 391-394.
- T. Lopez-Leon, A.A. Fernandez-Nieves, M. Nobili and C. Blanc, Nematic-Smectic Transition in Spherical Shells, Phys. Rev. Lett. 106 (2011) 247802.
- J. Guven J, D.M. Valencia and J. Vazquez-Montejo, Environmental bias and elastic curves on surfaces, Phys. A: Math. Theory. 47 (2014) Article ID 355201.
- L. Euler, Additamentum ”˜de curvis elasticis', in Methodus Inveniendi Lineas Curvas Maximi Minimive Probprietate Gau- dentes, Lausanne, 1744.
- C.H. Sequin, CAD Tools for Aesthetic Engineering, Comput.-Aided Des. Appl. 1 (2004) 301-309.
- D. Zorin, Curvature-based energy for simulation and variational modelling, Proceedings of the International Conference on Shape Modelling and Applications. SMI'05 (2005) 196-204.
- P. Joshi and C. Sequin, Energy Minimizer for Curvature-Based Surface Functional, CAD Conference, Waikiki, Hawaii. (2007) 607-617.
- A. Einstein, Zur Elektrodynamik bewegter K?rper, Annalen der Physik. 17 (1905), 891-921.
- A. Einstein, Relativity:The Special and General Theory, Henry Holt, New York, 1920.
- T. Roberts, S. Schleif and J.M. Dlugosz, What is the experimental basis of Special Relativity? Usenet Physics FAQ, 2007.
- A. Einstein, Does the inertia of a body depend on its energy content?, Annalen der Physik, 18 (1905) 639-641.
- M.K. Saad, H.S. Abdel-Aziz, G. Weiss and M.A. Soliman, Relation among Darboux frames of null Bertrand curves in Pseudo-Euclidean space, 1st Int. WLGK11, 2011.
- R. Capovilla, C. Chryssomalakos and J. Guven, Hamiltonians for curves, J. Phys. A. 35 (2002) 6571-6587.
- M. Carmeli, Motion of a charge in a gravitational field, Phys. Rev. B. 138 (1965) 1003-1007.
- J. Weber, Relativity and Gravitation, Interscience, New York, 1961.
- G. Napoli, L. Vergori, Extrinsic Curvature Effects on Nematic Shells, Phys. Rev. Lett. 108 (2012), Article ID 207803.