Left and Right Generalized Drazin Invertibility of an Upper Triangular Operator Matrices with Application to Boundary Value Problems
Main Article Content
Abstract
When A ∈ B(H) and B ∈ B(K) are given, we denote by MC the operator on the Hilbert space H ⊕ K of the form MC = (A C 0 B). In this paper we investigate the quasi-nilpotent part and the analytical core for the upper triangular operator matrix MC in terms of those of A and B. We give some necessary and sufficient conditions for MC to be left or right generalized Drazin invertible operator for some C ∈B(K,H). As an application, we study the existence and uniqueness of the solution for abstract boundary value problems described by upper triangular operator matrices with right generalized Drazin invertible component.
Article Details
References
- P. Aiena, Fredholm and local spectral theory, with applications to multipliers, Kluwer Academic Publishers, 2004.
- M. Barraa and M. Boumazgour, On the perturbations of spectra of upper triangular operator matrices, J. Math. Anal. Appl. 347 (1) (2008), 315-322.
- M. Benharrat and B. Messirdi, On the generalized Kato spectrum, Serdica Math. J. 37 (4) (2011), 283-294.
- M. Boumezgour, Drazin invertibility of upper triangular operator matrices, Linear and Multilinear Algebra 61 (5) (2013) , 627-634.
- X. H. Cao, M. Z. Guo and B. Meng, Drazin spectrum and Weyl's theorem for operator matrices, J. Math. Res. Exposition, 26 (3) (2006), 413-422.
- S. V. Djordjevic and B. P. Duggal, Drazin invertibility of the diagonal of an operator, Linear and Multilinear Algebra, 60 (1) (2012), 65-71.
- H. K. Du and J. Pan, Perturbation of spectrum of 2 × 2 operator matrices, Proc. Amer. Math. Soc. 121 (3) (1994), 761-766.
- S. Grabiner, Ascent, descent, and compact perturbations, Proc. Amer. Math. Soc. 71 (1) (1978), 79-80.
- J. K. Han, H. Y. Lee and W. Y. Lee, Invertible completions of 2 × 2 upper triangular operator matrices, Proc. Amer. Math. Soc. 128 (1) (1999), 119-123.
- G.L. Han and V. Chen, On the right (left) invertible completions for operator matrices, Integr. Equ. Oper. Theory 67 (1) (2010), 79-93.
- G. L. Han and A. Chen, Perturbations of the right and left spectra for operator matrices, J. Oper. Theory 67 (1) (2012), 207-214.
- R. Harte, On Kato non-singularity, Studia Math. 117 (2) (1996), 107-114.
- I. S. Hwang and W. Y. Lee, The boundedness below of 2 ×2 upper triangular operator matrices, Integr. Equ. Oper. Theory 39 (3) (2001), 267-276.
- M. A. Kaashoek and D.C. Lay, Ascent, descent, and commuting perturbations, Trans. Amer. Math. Soc. 169 (1972), 35-47.
- N. Khaldi, M. Benharrat and B. Messirdi, On the Spectral Boundary Value Problems and Boundary Approximate Controllability of Linear Systems. Rend. Circ. Mat. Palermo 63 (1) (2014), 141-153.
- N. Khaldi, M. Benharrat and B. Messirdi, A spectral analysis for solving boundary value matrix problems: existence, uniqueness and application to symplectic elasticity, J. Adv. Res. Appl. Math. 6 (4) (2014), 68-80.
- Kato, T., Perturbation theory for linear operators, Springer-Verlag, New York, 1966.
- J. J. Koliha, A generalized Drazin inverse, Glasgow Math. J. 38 (3) (1996), 367-381,
- V. Kordula and V. M ¨uller, The distance from the Apostol spectrum, Proc. Amer. Math. Soc. 124 (10) (1996), 3055-3061.
- J-P. Labrousse, Les op ´erateurs quasi-Fredholm une g ´en ´eralisation des op ´erateurs semi-Fredholm, Rend. Circ. Mat. Palermo 29 (1) (1980), 161-258.
- W. Y. Lee, Weyl spectra of operator matrices, Proc. Amer. Math. Soc. 129 (1) (2001), 131-138.
- Y. Li, X. H. Sun, and H. K. Du, The intersection of left (right) spectra of 2 × 2 upper triangular operator matrices, Linear Algebra Appl. 418 (1) (2006), 112-121.
- M. Mbekhta, Op ´erateurs pseudo-Fredholm I : R ´esolvant g ´en ´eralis ´e, J. Operator Theory 24 (2) ( 1990), 255-276.
- K. Miloud Hocine, M. Benharrat and B. Messirdi, Left and right generalized Drazin invertible operators, Linear and Multilinear Algebra 63 (8) (2015), 1635-1648.
- V. M ¨uller, On the regular spectrum, J. Operator Theory 31 (2) (1994) , 363-380.
- V. M ¨uller, Spectral theory of linear operators and spectral systems in Banach algebra, Birkhauser, 2007.
- V. Rakoˇcevi ´c, Generalized spectrum and commuting compact perturbations, Proc. Edinburgh. Math. Soc.36 (2) (1993), 197-209.
- S. F. Zhang, H. J. Zhong, and Q. F. Jiang, Drazin spectrum of operator matrices on the Banach space, Linear Algebra Appl. 429 (8-9) (2008), 2067-2075.
- Y. N. Zhang, H. J. Zhong and L. Q. Lin, Browder spectra and essential spectra of operator matrices, Acta Math. Sinica 24 (6) ( 2008), 947-954.
- S. F. Zhang, H. J. Zhong and L. Q. Lin, Generalized Drazin spectrum of operator matrices, Appl. Math. J. Chinese Univ. 29 (2) (2014), 162-170.