Left and Right Generalized Drazin Invertibility of an Upper Triangular Operator Matrices with Application to Boundary Value Problems

Main Article Content

Kouider Miloud Hocine, Bekkai Messirdi, Mohammed Benharrat

Abstract

When A ∈ B(H) and B ∈ B(K) are given, we denote by MC the operator on the Hilbert space H ⊕ K of the form MC = (A C 0 B). In this paper we investigate the quasi-nilpotent part and the analytical core for the upper triangular operator matrix MC in terms of those of A and B. We give some necessary and sufficient conditions for MC to be left or right generalized Drazin invertible operator for some C ∈B(K,H). As an application, we study the existence and uniqueness of the solution for abstract boundary value problems described by upper triangular operator matrices with right generalized Drazin invertible component.

Article Details

References

  1. P. Aiena, Fredholm and local spectral theory, with applications to multipliers, Kluwer Academic Publishers, 2004.
  2. M. Barraa and M. Boumazgour, On the perturbations of spectra of upper triangular operator matrices, J. Math. Anal. Appl. 347 (1) (2008), 315-322.
  3. M. Benharrat and B. Messirdi, On the generalized Kato spectrum, Serdica Math. J. 37 (4) (2011), 283-294.
  4. M. Boumezgour, Drazin invertibility of upper triangular operator matrices, Linear and Multilinear Algebra 61 (5) (2013) , 627-634.
  5. X. H. Cao, M. Z. Guo and B. Meng, Drazin spectrum and Weyl's theorem for operator matrices, J. Math. Res. Exposition, 26 (3) (2006), 413-422.
  6. S. V. Djordjevic and B. P. Duggal, Drazin invertibility of the diagonal of an operator, Linear and Multilinear Algebra, 60 (1) (2012), 65-71.
  7. H. K. Du and J. Pan, Perturbation of spectrum of 2 × 2 operator matrices, Proc. Amer. Math. Soc. 121 (3) (1994), 761-766.
  8. S. Grabiner, Ascent, descent, and compact perturbations, Proc. Amer. Math. Soc. 71 (1) (1978), 79-80.
  9. J. K. Han, H. Y. Lee and W. Y. Lee, Invertible completions of 2 × 2 upper triangular operator matrices, Proc. Amer. Math. Soc. 128 (1) (1999), 119-123.
  10. G.L. Han and V. Chen, On the right (left) invertible completions for operator matrices, Integr. Equ. Oper. Theory 67 (1) (2010), 79-93.
  11. G. L. Han and A. Chen, Perturbations of the right and left spectra for operator matrices, J. Oper. Theory 67 (1) (2012), 207-214.
  12. R. Harte, On Kato non-singularity, Studia Math. 117 (2) (1996), 107-114.
  13. I. S. Hwang and W. Y. Lee, The boundedness below of 2 ×2 upper triangular operator matrices, Integr. Equ. Oper. Theory 39 (3) (2001), 267-276.
  14. M. A. Kaashoek and D.C. Lay, Ascent, descent, and commuting perturbations, Trans. Amer. Math. Soc. 169 (1972), 35-47.
  15. N. Khaldi, M. Benharrat and B. Messirdi, On the Spectral Boundary Value Problems and Boundary Approximate Controllability of Linear Systems. Rend. Circ. Mat. Palermo 63 (1) (2014), 141-153.
  16. N. Khaldi, M. Benharrat and B. Messirdi, A spectral analysis for solving boundary value matrix problems: existence, uniqueness and application to symplectic elasticity, J. Adv. Res. Appl. Math. 6 (4) (2014), 68-80.
  17. Kato, T., Perturbation theory for linear operators, Springer-Verlag, New York, 1966.
  18. J. J. Koliha, A generalized Drazin inverse, Glasgow Math. J. 38 (3) (1996), 367-381,
  19. V. Kordula and V. M ¨uller, The distance from the Apostol spectrum, Proc. Amer. Math. Soc. 124 (10) (1996), 3055-3061.
  20. J-P. Labrousse, Les op ´erateurs quasi-Fredholm une g ´en ´eralisation des op ´erateurs semi-Fredholm, Rend. Circ. Mat. Palermo 29 (1) (1980), 161-258.
  21. W. Y. Lee, Weyl spectra of operator matrices, Proc. Amer. Math. Soc. 129 (1) (2001), 131-138.
  22. Y. Li, X. H. Sun, and H. K. Du, The intersection of left (right) spectra of 2 × 2 upper triangular operator matrices, Linear Algebra Appl. 418 (1) (2006), 112-121.
  23. M. Mbekhta, Op ´erateurs pseudo-Fredholm I : R ´esolvant g ´en ´eralis ´e, J. Operator Theory 24 (2) ( 1990), 255-276.
  24. K. Miloud Hocine, M. Benharrat and B. Messirdi, Left and right generalized Drazin invertible operators, Linear and Multilinear Algebra 63 (8) (2015), 1635-1648.
  25. V. M ¨uller, On the regular spectrum, J. Operator Theory 31 (2) (1994) , 363-380.
  26. V. M ¨uller, Spectral theory of linear operators and spectral systems in Banach algebra, Birkhauser, 2007.
  27. V. Rakoˇcevi ´c, Generalized spectrum and commuting compact perturbations, Proc. Edinburgh. Math. Soc.36 (2) (1993), 197-209.
  28. S. F. Zhang, H. J. Zhong, and Q. F. Jiang, Drazin spectrum of operator matrices on the Banach space, Linear Algebra Appl. 429 (8-9) (2008), 2067-2075.
  29. Y. N. Zhang, H. J. Zhong and L. Q. Lin, Browder spectra and essential spectra of operator matrices, Acta Math. Sinica 24 (6) ( 2008), 947-954.
  30. S. F. Zhang, H. J. Zhong and L. Q. Lin, Generalized Drazin spectrum of operator matrices, Appl. Math. J. Chinese Univ. 29 (2) (2014), 162-170.