Algebraic Structure of Graph Operations in Terms of Degree Sequences

Main Article Content

Vishnu Narayan Mishra, Sadik Delen, Ismail Naci Cangul

Abstract

In this paper, by means of the degree sequences (DS) of graphs and some graph theoretical and combinatorial methods, we determine the algebraic structure of the set of simple connected graphs according to two graph operations, namely join and Corona product. We shall conclude that in the case of join product, the set of graphs forms an abelian monoid whereas in the case of Corona product, this set is not even associative, it only satisfies two conditions, closeness and identity element. We also give a result on distributive law related to these two operations.

Article Details

References

  1. B. Bollobas, Degree Sequences of Random Graphs, Discrete Math. 33 (1981), 1-19.
  2. K. C. Das, N. Akgunes, M. Togan, A. Yurttas, I. N. Cangul, A. S. Cevik, On the first Zagreb index and multiplicative Zagreb coindices of graphs, An. tiin. Univ. Ovidius Constana, Ser. Mat. 24 (1) (2016), 153-176.
  3. K. C. Das, A. Yurttas, M. Togan, I. N. Cangul, A. S. Cevik, The Multiplicative Zagreb Indices of Graph Operations, J. Inequal. Appl. 90 (2013), 1-14.
  4. A. Ivanyi, L. Lucz, G. Gombos, T. Matuszka, Parallel Enumeration of Degree Sequences of Simple Graphs II, Acta Univ. Sapientiae, Informatica 5 (2) (2013), 245-270.
  5. H. Kim, Z. Toroczkai, I. Miklos, P. L. Erd ¨os, L. A. Szekely, On Realizing all Simple Graphs with a Given Degree Sequence, J. Phys. A: Math. Theor. 42 (2009), 1-6.
  6. J. W. Miller, Reduced Criteria for Degree Sequences, Discrete Math. 313 (2013), 550-562.
  7. A. Triphati, H. Tyagi, A Simple Criterion on Degree Sequences of Graphs, Discrete Appl. Math. 156 (2008), 3513-3517.
  8. R. I. Tyshkevich, O. I. Mel'nikov, V. M. Kotov, On Graphs and Degree Sequences: Canonical Decomposition, Kibernetika 6 (1981), 5-8.
  9. R. I. Tyshkevich, A. A. Chernyak, Zh. A. Chernyak, Graphs and Degree Sequences I, Cybernetics 23 (6) (1987), 734-745.
  10. I. E. Zverovich, V. E. Zverovich, Contributions to the Theory of Graphic Sequences, Discrete Math. 105 (1992), 293-303.