A Comparison and Error Analysis of Error Bounds

Main Article Content

A. R. Kashif, T. S. Khan, A. Qayyum, I. Faye

Abstract

In this paper, we present an error analysis with the help of Ostrowski type inequalities for n-times differentiable mappings by using n-times peano kernel. A comparison is also presented which shows that obtained error bounds are better than the previous error bounds.

Article Details

References

  1. M. W. Alomari, A companion of ostrowski's inequality for mappings whose first derivatives are bounded and applications numerical integration, Kragujevac J. Math. 36 (2012), 77 - 82.
  2. W. G. Alshanti, A. Qayyum and M. A. Majid, Ostrowski type inequalities by using a generalized quadratic kernel, J. Inequal. Spec. Funct. 8 (4) (2017), 111-135.
  3. W. G. Alshanti and A. Qayyum, A note on new Ostrowski type inequalities using a generalized kernel, Bull. Math. Anal. Appl. 9 (1) (2017), 74-91.
  4. N. S. Barnett, S. S. Dragomir and I. Gomma, A companion for the Ostrowski and the generalized trapezoid inequalities, J. Math. Comput. Model. 50 (2009), 179-187.
  5. H. Budak, M. Z. Sarikaya and A. Qayyum, Improvement in Companion of Ostrowski Type Inequalities for Mappings Whose First Derivatives are of Bounded Variation and Applications, Filomat 31 (2017), 5305-5314.
  6. P. Cerone, S. S. Dragomir, J. Roumeliotis and J. Sunde, A new generalization of the trapezoid formula for n-time differ- entiable mappings and applications, Demonstr. Math. 33(4) (2000), 719-736.
  7. S. S. Dragomir, Some companions of Ostrowski's inequality for absolutely continuous functions and applications, Bull. Korean Math. Soc. 40 (2) (2005), 213-230.
  8. S. S. Dragomir and S. Wang, An inequality of Ostrowski-Grüss type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules, Comput. Math. Appl. 33 (11) (1997), 15-20.
  9. A. Guessab and G. Schmeisser, Sharp integral inequalities of the Hermite-Hadamard type, J. Approx. Theory, 115 (2) (2002), 260-288.
  10. Z. Liu, Some companions of an Ostrowski type inequality and applications, J. Inequal. Pure Appl. Math. 10 (2) (2009), 10-12.
  11. W. Liu, New Bounds for the Companion of Ostrowski's Inequality and Applications, Filomat, 28 (2014), 167-178.
  12. W. Liu, Y. Zhu and J. Park, Some companions of perturbed Ostrowski-type inequalities based on the quadratic kernel function with three sections and applications, J. Inequal. Appl. 2013 (2013), Article ID 226.
  13. D. S. Mitrinvi ´ c, J. E. Pecari ´ c and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, 1993.
  14. D. S. Mitrinovi ´ c, J. E. Pecari ´ c and A. M. Fink, Inequalities involving functions and their integrals and derivatives, Math- ematics and its Applications. (East European Series), Kluwer Acadamic Publications Dordrecht, 1991.
  15. A. Ostrowski, ¨ Uber die Absolutabweichung einer differentienbaren Funktionen von ihren Integralimittelwert, Comment. Math. Hel. 10 (1938), 226-227.
  16. A. Qayyum and S. Hussain, A new generalized Ostrowski Grüss type inequality and applications, Appl. Math. Lett. 25 (2012), 1875-1880.
  17. A. Qayyum, M. Shoaib and I. Faye, Companion of Ostrowski-type inequality based on 5-step quadratic kernel and appli- cations, J. Nonlinear Sci. Appl. 9 (2016), 537-552.
  18. A. Qayyum, M. Shoaib and I. Faye, On new refinements and applications of efficient quadrature rules using n-times differentiable mappings, J. Comput. Anal. Appl. 23 (4) (2017), 723-739.
  19. A. Qayyum, A weighted Ostrowski Grüss Type Inequality for Twice Differentiable Mappings belongs to Lp[a,b] and Ap- plications, The Proceedings of International Conference of Engineering Mathematics, London, U.K., 1-3 July (2009).
  20. N. UJevi ´ c, New bounds for the first inequality of Ostrowski-Grüss type and applications, Comput. Math. Appl. 46 (2003), 421-427.