µ-Values for Matrices Corresponding to Symmetries in Control Systems

Main Article Content

Mutti-Ur Rehman, M. Fazeel Anwar

Abstract

In this article we consider numerical approximation of structured singular values ($\mu-$values). The lower bounds for $\mu-$values are approximated by using ordinary differential equations based technique. The structured singular values provide a vital tool to investigate stability of feedback systems. We also compute the lower bounds of $\mu-$values for certain matrices that correspond to symmetries in control systems.

Article Details

References

  1. Bernhardsson, Bo and Rantzer, Anders and Qiu, Li. Real perturbation values and real quadratic forms in a complex vector space. Linear Algebra Appl., 1(1994): 131-154.
  2. Braatz, Richard P and Young, Peter M and Doyle, John C and Morari, Manfred. Computational complexity of µ calcu- lation. IEEE Trans. Autom. Control, 39(1994): 1000-1002.
  3. Chen, Jie and Fan, Michael KH and Nett, Carl N. Structured singular values with nondiagonal structures. I. Characteri- zations. IEEE Trans. Autom. Control, 41(1996): 1507-1511.
  4. Danielson, Claus Robert. Symmetric constrained optimal control: Theory, algorithms, and applications. University of California, Berkeley, 2014.
  5. Fan, Michael KH and Tits, André L and Doyle, John C. Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics. IEEE Trans. Autom. Control, 36(1991): 25-38
  6. Hinrichsen, D and Pritchard, AJ. Mathematical systems theory I, vol. 48 of Texts in Applied Mathematics. Springer- Verlag, Berlin Volume 48(2005).
  7. Karow, Michael and Kokiopoulou, Effrosyni and Kressner, Daniel. On the computation of structured singular values and pseudospectra. Syst. Control Lett. 59(2010): 122-129.
  8. Karow, Michael and Kressner, Daniel and Tisseur, Fran ¸coise. Structured eigenvalue condition numbers. SIAM J. Matrix Anal. Appl. 28(2006): 1052-1068.
  9. Packard, Andrew and Doyle, John. The complex structured singular value. Automatica 29(1993): 71-109.
  10. Packard, Andy and Fan, Michael KH and Doyle, John. A power method for the structured singular value. Decision and Control, 1988., Proceedings of the 27th IEEE Conference on, 2132-2137, (1998).
  11. Qiu, Li and Bernhardsson, Bo and Rantzer, Anders and Davison, EJ and Young, PM and Doyle, JC. A formula for computation of the real stability radius. Automatica, 31(1995), 879-890.
  12. Rehman, Mutti-Ur and Tabassum, Shabana Numerical Computation of Structured Singular Values for Companion Ma- trices. J. Appl. Math. Phys., 5(2017), 1057-1072.
  13. Doyle, John Analysis of feedback systems with structured uncertainties. IEEE Proc. D-Control Theory Appl., 129(1982), 242-250.
  14. Ferreres, Gilles A practical approach to robustness analysis with aeronautical applications. Springer Science & Business Media, (1999)
  15. Fu, Minyue The real structured singular value is hardly approximable. IEEE Trans. Autom. Control, 42(1997), 1286 - 1288.
  16. Newlin, Matthew P and Glavaski, Sonja T Advances in the computation of the/spl mu/lower bound. Proc. 1995 Amer. Control Conf., (1995).