Integral Inequalities via Generalized Geometrically r-Convex Functions
Main Article Content
Abstract
In this paper, we introduce and investigate a new class of generalized convex functions, called generalized geometrically r-convex functions. Some new Hermite-Hadamard integral inequalities via generalized geometrically r-convex functions have been established. Results proved in this paper can be viewed as new significant contributions in this area of research.
Article Details
References
- G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl, 335(2007), 1294-1308.
- M. Alomari, M. Darus and S. S. Dragomir, New inequalities of Simpson's type for s-convex functions with applications, RGMIA Res. Rep. Coll, 12 (4)(2009).
- C. Baiochi and A. Capelo, Variational and Quas-Variational Inequalities, Wiley, New York, (1984).
- J. Crank, Free and Moving Boundary Problems, Clarendon Press, Osford, UK, (1984).
- G. Cristescu, L. Lupsa, Non-connected Convexities and Applications, Kluwer Academic Publishers, Dordrechet, Holland,(2002).
- M. R. Delavar and S. S. Dragomir, On η-convexity, Math. Inequal. Appl, 20(1)(2017), 203-216.
- S. S. Dragomir and C. E. M. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, Victoria University, Australia, (2000).
- R. Glowinski, J. L. Lions and R. Tremolieres, Numerical Analysis of Variational Inequalities, North-Holland, Amsterdam, (1981).
- M. E. Gordji, M. R. Delavar and M. D. Sen, On φ convex functions, J. Math. Inequal, 10(1)(2016), 173-183.
- M. E. Gordji, M. R. Delavar and S. S. Dragomir, An inequality related to η-convex functions (II), Int. J. Nonlinear Anal. Appl, 6(2)(2015), 27-33.
- P. M. Gill, C. E. M. Pearce , J. Pecaric, Hadamards inequality for r-convex functions, J. Math. Anal. Appl, 215(1997), 461470.
- J. Hadamard, Etude sur les proprietes des fonctions entieres et en particulier dune fonction consideree par Riemann, J. Math. Pure. Appl, 58(1893), 171-215.
- C. Hermite, Sur deux limites d'une integrale definie, Mathesis, 3(1983), 82.
- D. H. Hyers and S. M. Ulam, Approximately convex functions, Proc. Amer. Math. Soc, 3(1952), 821-828.
- C. P. Niculescu and L. E. Persson, Convex Functions and Their Applications. Springer Verlag, New York, (2006).
- M. A. Noor, On Variational Inequalities, PhD Thesis, Brunel University, London, UK, (1975).
- M. A. Noor, General variational inequalities, Appl. Math. Letters, 1(1988), 119-121.
- M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl, 251(2000), 217-230.
- M. A. Noor, Some developments in general variational inequalites, Appl. Math. Comput. 152(2004), 199-277.
- M. A. Noor and K. I. Noor, Harmonic variational inequalities, Appl. Math. Inform. Sci. 10(5)(2016), 1811-1814.
- M. A. Noor, K. I. Noor and Th. M. Rassias, Some aspects of variational inequalities, J. Comput. Appl. Math. 47(1993), 285-312.
- M. A. Noor, K. I. Noor and M. U. Awan, Some new estimates of Hermite-Hadamard inequalities via harmonically convex functions, Le Mathematiche, LXXI(II)(2016), 117-127.
- M. A. Noor, K. I. Noor, M. U. Awan and F. Safdar, On strongly generalized convex functions, Filomat, 31(18)(2017), 5783-5790.
- M. A. Noor, K. I. Noor and F. Safdar, Generalized geometrically convex functions and inequalities, J. Inequal. Appl, 2017(2017):22.
- M. A. Noor, K. I. Noor and F. Safdar, Integral inequaities via generalized convex functions, J. Math. Computer, Sci, 17(4)(2017), 465-476.
- M. A. Noor, K. I. Noor, S. Iftikhar, F. Safdar, Integral inequaities for relative harmonic (s, η)-convex functions, Appl. Math. Comp. Sci, 1(1)(2015), 27-34.
- M. A. Noor, K. I. Noor, S. Iftikhar and S. Safdar, Generalized (h, r)-harmonic convex functionsand inequalities, Inter. J. Math. Anal. 16(4)(2018),542-555.
- M. A. Noor, K. I. Noor and F. Safdar, Integral inequaities via generalized (α, m)-convex functions, J. Nonlinear. Func. Anal, 2017, (2017), Article ID: 32.
- M. A. Noor, K. I. Noor, S. Iftikhar, Inequaities via (p, r)-convex functions, RAD, (2018).
- M. A. Noor, K. I. Noor and F. Safdar, New inequalities for generalized log h-convex function, J. Appl. Math. Inform, 36(3-4)(2018), 245-256.
- M. A. Noor, K. I. Noor, F. Safdar, M. U. Awan and S. Ullah, Inequaities via generalized log m-convex functions, J. Nonlinear. Sci. Appl, 10(2017), 5789-5802.
- M. A. Noor, K. I. Noor and F. Safdar, Generalized r-convex functions and integral inequalities. Int. J. Anal. Appl, 16(2018).
- C. P. Niculescu, Convexity according to the geometric mean, Math. Inequal. Appl, 3(2)(2000), 155-167.
- N. P. N. Ngoc, N.V. Vinh, P. T. T. Hien, Integral inequalities of Hadamard type for r-Convex functions, Int. Math. Forum, 4 (35)(2009), 1723-1728.
- G. Stampacchia, Formes bilineaires coercivities sur les ensembles convexes, C. R. Acad. Sci. Paris, 258(1964), 4413-4416.