Fixed Points for Triangular α-Admissible Geraghty Contraction Type Mappings in Partial b-Metric Spaces
Main Article Content
Abstract
In this paper, we introduce the notion of generalized C-class functions for Geraghty contraction type mappings on a set X. We utilize our new notion to prove fixed point results in the setting of triangular weak α-admissible mappings with respect to η in Partial b-Metric Spaces. Our results modify and improve many exciting results in the literature. Also, we introduce an example and an application to show the validity of our main result.
Article Details
References
- T. Abdeljawad, Meir-Keeler α-contractive fixed and common fixed point theorems, Fixed Point Theory Appl., 2013 (2013), Art. ID 19.
- A. Aghajani, M. Abbas, J.R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Mathematica Slovaka, (2013).
- S. Alizadeh, F. Moradlou, P. Salimi, Some fixed point results for (α, β) - (ψ, φ)-contractive mappings, Filomat, 28 (2014), 635-647.
- A. H. Ansari, Note on φ - ψ- contractive type mappings and related fixed point, The 2nd Regional Conference on Mathematics and Applications, (2014), 377-380.
- A.H Ansari, W. Shatanawi, A. kurdi, G. Maniu, Best promixity points in complete metric spaces with (P)-property via C-class fuctions, J. Math. Anal., 7 (2016), 54-67.
- A. H. Ansari, J. Kaewcharoen, C-class functions and fixed point theorems for generalized α-η-ψ-φ-F-contraction type mappings in α-η-complete metric spaces, J. Nonlinear Sci. Appl., 9 (2016), 4177-4190.
- I.A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., 30 (1989), 26-37.
- S. Banach, Sur Les operations ´ dans les ensembles abstraits et leur application aux ´equations int ´egrals, Fund. Math, 3 (1922), 133-181.
- A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen. 57 (2000), 31-37.
- S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav., 1 (1993), 5-11.
- S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Univ. Modena, 46 (1998), 263-276.
- P. Das, A fixed point theorem in a generalized metric space, Soochow J. Math., 33 (2007) 33-39.
- H. Isik, A. H. Ansari,S. Chandok, Common fixed points for (ψ, f, α, β)-weakly contractive mappings in generalized matric space via new functions, Gazi Univ. J. Sci., 4 (2015),703-708.
- N. Hussain, P. Salimi and A. Latif, Fixed point results for single and set-valued a α - eta - ψ-contractive mappings, Fixed Point Theory Appl., 2013 (2013), Art. ID 212.
- N. Hussain, M. A. Kutbi, P. Salimi, Fixed point theory in α-complete metric spaces with applications, Abstr. Appl. Anal., 2014 (2014), Article ID 280817.
- E. Karapinar, B. Samet, Generalized α-ψ-contractive type mappings and related fixed point theorems with applications, Abstr. Appl. Anal., (2012), Article ID 793486.
- E. Karapinar, P. Kumam and P. Salimi, On α - ψ-Meir-Keeler contractive mappings, Fixed Point Theory Appl., 2013 (2013), Art. ID 94.
- E. Karapinar, α-ψ-Geraghty contraction type mappings and some relatead fixed point results, Filomat, 28 (2014), 37-48.
- M. S. Khan, A fixed point theorem for metric spaces, Rend. Inst. Math. Univ. Trieste., 8 (1976), 69-72.
- M. S. Khan, M. Swaleh, and S. Sessa, Fixed point theorems by altering distances between the points, Bull. Aust. Math. Soc., 30 (1984), 1-9.
- S.G Matthews, Partial metric topology, Proc. 8th Summer Conference on General Topology and Application. Ann. New York Acad. Sci., 728 (1994), 183-197.
- D. K. Patel, Th. Abdeljawad, D. Gopal, Common fixed points of generalized Meir-Keeler α-contractions, Fixed Point Theory Appl., 2013 (2013), Art. ID 260.
- H. Qawaqneh, M. S. M. Noorani, W. Shatanawi, H. Alsamir, Common fixed points for pairs of triangular (α)-admissible mappings, J. Nonlinear Sci. Appl., 10 (2017), 6192-6204.
- H. Qawaqneh, M. S. M. Noorani, W. Shatanawi, K. Abodayeh, H. Alsamir, Fixed point for mappings under contractive condition based on simulation functions and cyclic (α, β)-admissibility, J. Math. Anal., 9 (2018), 38-51.
- H. Qawaqneh, M. S. M. Noorani, W. Shatanawi, Fixed Point Results for Geraghty Type Generalized F -contraction for Weak alpha-admissible Mapping in Metric-like Spaces, Eur. J. Pure Appl. Math., 11 (2018), 702-716.
- H. Qawaqneh, M.S.M. Noorani, W. Shatanawi, Common Fixed Point Theorems for Generalized Geraghty (α, ψ, φ)-Quasi Contraction Type Mapping in Partially Ordered Metric-like Spaces, Axioms, 7 (2018), Art. ID 74.
- H. Qawaqneh, M.S.M. Noorani, W. Shatanawi, Fixed Point Theorems for (α, k, θ)-Contractive Multi-Valued Mapping in b-Metric Space and Applications, Int. J. Math. Comput. Sci., 14 (2018), 263-283.
- H. Qawaqneh, M.S.M. Noorani, W. Shatanawi, H. Alsamir, Some Fixed Point Results for the Cyclic (α, β) - (k, θ)-MultiValued Mappings in Metric Space, International Conference on Fundamental and Applied Sciences (ICFAS2018), 2018.
- J. R. Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei, W. Shatanawi, Common fixed points of almost generalized (ψ, φ)scontractive mappings in ordered b-metric spaces, Fixed Point Theory Appl., 2013 (2013), Art. ID 159.
- P. Salimi, A. Latif and N. Hussain, Modified a α - ψ-contractive mappings with applications, Fixed Point Theory Appl. 2013 (2013), Art. ID 151.
- B. Samet, C. Vetro, P. Vetro, Fixed point theorems for a α - ψ-contractive type mappings, Nonlinear Anal., Theory Methods Appl., 75 (2012), 2154-2165.
- W. Sintunavarat, Nonlinear integral equations with new admissibility types in b-metric spaces, J. Fixed Point Theory Appl., 18 (2016), 397-416.
- W. Shatanawi and M. Postolache, common fixed point results for mappings under nonlinear contraction of cyclic form in ordered metric spaces, Fixed Point Theory Appl., 2013 (2013), Art. ID 60.
- W. Shatanawi, M. Noorani, H. Alsamir and A. Bataihah, Fixed and common fixed point theorems in partially ordered quasi-metric spaces, J. Math. Computer Sci., 16 (2016), 516-528.
- S. Shukla, Partial b-metric spaces and fixed point theorems, Mediterr. J. Math., 11(2014), 703-711.