Solutions of Fractional Diffusion Equations and Cattaneo-Hristov Diffusion Model

Main Article Content

Ndolane Sene

Abstract

The analytical solutions of the fractional diffusion equations in one and two-dimensional spaces have been proposed. The analytical solution of the Cattaneo-Hristov diffusion model with the particular boundary conditions has been suggested. In general, the numerical methods have been used to solve the fractional diffusion equations and the Cattaneo-Hristov diffusion model. The Laplace and the Fourier sine transforms have been used to get the analytical solutions. The analytical solutions of the classical diffusion equations and the Cattaneo-Hristov diffusion model obtained when the order of the fractional derivative converges to 1 have been recalled. The graphical representations of the analytical solutions of the fractional diffusion equations and the Cattaneo-Hristov diffusion model have been provided.

Article Details

References

  1. B. S. T. Alkahtani and A. Atangana. A note on cattaneo-hristov model with non-singular fading memory. Therm. Sci., 21(1)(2017), 1-7.
  2. A. Atangana and D. Baleanu. New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. arXiv preprint arXiv:1602.03408, (2016).
  3. A. Atangana and JF. Gomez-Aguilar. Fractional derivatives with noindex law property: Application to chaos and statistics. Chaos Solitons Fractals, 114 (2018), 516-535.
  4. A. Atangana and I. Koca. Chaos in a simple nonlinear system with atanganabaleanu derivatives with fractional order. Chaos Solitons Fractals, 89 (2016), 447-454.
  5. L. Beghin. Fractional diffusion-type equations with exponential and logarithmic differential operators. Stoc. Proc. Appl., 128(7)(2018), 2427-2447.
  6. M. Caputo and M. Fabrizio. A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl., 1(2)(2015), 1-13.
  7. A. C. Escamilla, JF. G. Aguilar, L. Torres, and RF. E. Jimnez. A numerical solution for a variable-order reactiondiffusion model by using fractional derivatives with non-local and non-singular kernel. Phys. A: Stat. Mech. Appl., 491(2018), 406-424.
  8. H. Delavari, D. Baleanu, and J. Sadati. Stability analysis of caputo fractional-order nonlinear systems revisited. Nonlinear Dyn., 67(4) (2012), 2433-2439.
  9. E. F. D. Goufo. Chaotic processes using the two-parameter derivative with non-singular and non-local kernel: basic theory and applications. Chaos: An Inter. J. Nonlinear Sci., 26(8) (2016), 084-305.
  10. J. Hristov. On the atangana-baleanu derivative and its relation to the fading memory concept: The diffusion equation formulation. Trends in theory and applications of fractional derivatives with Mittag-Leffler kernel, Springer. 2019.
  11. J. Hristov. Approximate solutions to fractional subdiffusion equations. Eur. Phys. J. Spect. Topics, 193(1)(2011), 229-243.
  12. J. Hristov. Transient heat diffusion with a non-singular fading memory: from the cattaneo constitutive equation with jeffrey's kernel to the caputo-fabrizio time-fractional derivative. Therm. Sci., 20(2) (2016), 757-762.
  13. J. Hristov. Derivation of the fractional dodson equation and beyond: Transient diffusion with a non-singular memory and exponentially fadingout diffusivity. Progr. Fract. Differ. Appl, 3(4) (2017), 1-16.
  14. J. Hristov. Multiple integral-balance method basic idea and an example with mullins model of thermal grooving. Therm. Sci., 21(2017), 1555-1560.
  15. J. Hristov. The non-linear dodson diffusion equation: Approximate solutions and beyond with formalistic fractionalization. Math. Nat. Sci., 1(1) (2017), 1-17.
  16. J. Hristov. Fourth-order fractional diffusion model of thermal grooving: integral approach to approximate closed form solution of the mullins model. Math. Model. Nat. Phenom. 13(1)(2018), 6.
  17. J. Hristov. Integral-balance solution to nonlinear subdiffusion equation. Front. Fract. Calcu., 1(2018), 70.
  18. J. Hristov. The heat radiation diffusion equation: Explicit analytical solutions by improved integral-balance method. Therm. Sci., 22(2) (2018), 777-788.
  19. J. Hristov. Integral balance approach to 1-d space-fractional diffusion models. Math. Meth. Eng., (2019), 111-131, Springer.
  20. J. Hristov. A transient flow of a non-newtonian fluid modelled by a mixed time-space derivative: An improved integralbalance approach. Math. Meth. Eng., (2019), 153-174, Springer.
  21. F. Jarad and T. Abdeljawad. A modified laplace transform for certain generalized fractional operators. Res. Nonlinear Anal., (2)(2018), 88-98.
  22. F. Jarad, E. Ugurlu, T. Abdeljawad, and Dumitru Baleanu. On a new class of fractional operators. Adv. Diff. Equa., (1)(2017), 247.
  23. H. Jordan. Steady-state heat conduction in a medium with spatial non-singular fading memory derivation of caputo-fabrizio spacefractional derivative from cattaneo concept with jeffrey's kernel and analytical solutions. Therm. Sci., 21(2) (2017), 827-839.
  24. U. N. Katugampola. A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl, 6(4)(2014), 115.
  25. A. A. Kilbas, M Rivero, L Rodriguez-Germa, and JJ Trujillo. Caputo linear fractional differential equations. IFAC Proc. 39(11) (2006), 52-57.
  26. I. Koca and Abdon Atangana. Solutions of cattaneo-hristov model of elastic heat diffusion with caputo-fabrizio and atangana-baleanu fractional derivatives. Therm. Sci., 21 (2017), 2299-2305.
  27. L. Li, J. G. Liu, and L. Wang. Cauchy problems for kellersegel type timespace fractional diffusion equation. J. Differ. Equ., 265(3)(2018), 1044-1096.
  28. Y. Li, Y. Q. Chen, and I. Podlubny. Mittagleffler stability of fractional order nonlinear dynamic systems. Auto., 45(8) (2009), 1965-1969.
  29. Y. Li, F. Liu, I. W. Turner, and T. Li. Time-fractional diffusion equation for signal smoothing. Appl. Math. Comp., 326 (2018), 108116.
  30. J. Losada and J. J. Nieto. Properties of a new fractional derivative without singular kernel. Progr. Fract. Differ. Appl, 1(2)(2015), 87-92.
  31. Y. Ma, F. Zhang, and C. Li. The asymptotics of the solutions to the anomalous diffusion equations. Comput. Math. Appl., 66(5)(2013), 682-692.
  32. T. Myers. Optimal exponent heat balance and refined integral methods applied to stefan problems. Int. J. Heat Mass Transfer, 53(5-6) (2010), 1119-1127.
  33. K. M. Owolabi and A. Atangana. Robustness of fractional difference schemes via the caputo subdiffusion-reaction equations. Chaos, Solitons Fractals, 111 (2018), 119-127.
  34. I. Podlubny. Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, (1998), 198. Acad. Press.
  35. I. Podlubny. Matrix approach to discrete fractional calculus ii: Partial fractional differential equations. (2009).
  36. S. Priyadharsini. Stability of fractional neutral and integrodifferential systems. J. Fract. Calc. Appl.,7(1) (2016), 87-102.
  37. Z. Ruan, W. Zhang, and Zewen Wang. Simultaneous inversion of the fractional order and the space-dependent source term for the time-fractional diffusion equation. Appl. Math. Comput., 328 (2018), 365-379.
  38. K. M. Saad, D. Baleanu, and A. Atangana. New fractional derivatives applied to the kortewegde vries and korteweg-de vries-burgers equations. Comput. Appl. Math., 37 (2018), 52035216.
  39. Y. Salehi, M. T. Darvishi, and W. E. Schiesser. Numerical solution of space fractional diffusion equation by the method of lines and splines. Appl. Math. Comput., 336 (2018), 465-480.
  40. N. Sene. Exponential form for lyapunov function and stability analysis of the fractional differential equations. J. Math. Comput. Sci. 18(4)(2018), 388-397.
  41. N. Sene. Lyapunov characterization of the fractional nonlinear systems with exogenous input. Fractal Fract., (2018), 2(2):17.
  42. N. Sene. Solutions for some conformable differential equations. Progr. Fract. Differ. Appl., 4(4)(2018), 493-501.
  43. N. Sene. Stokes first problem for heated flat plate with atangana-baleanu fractional derivative. Chaos Soli. Fract., 117 (2018), 68-75.
  44. S. Shen, F. Liu, and V. V. Anh. The analytical solution and numerical solutions for a two-dimensional multi-term time fractional diffusion and diffusion-wave equation. J. Comput. Appl. Math., 345 (2019), 515-534.
  45. J. Zhang, X. Zhang, and B. Yang. An approximation scheme for the time fractional convectiondiffusion equation. Appl. Math. Comput., 335(2018), 305-312.