Coupled Best Proximity Point Theorem in Metric Spaces
Main Article Content
Abstract
The purpose of this article is to generalized the result of W. Sintunavarat and P. Kumam [29]. We also give an example in support of our theorem for which result of W. Sintunavarat and P. Kumam [29] is not true. Moreover we establish the existence and convergence theorems of coupled best proximity points in metric spaces, we apply this results in a uniformly convex Banach space.
Article Details
References
- M. Abbas, W. Sintunavarat, P. Kumam, Coupled fixed point in partially ordered G metric spaces. Fixed Point Theory Appl. 2012, 31 (2012)
- A. D. Arvanitakis, A proof of the generalized Banach contraction conjecture. Proc. Am. Math. Soc. 131(12), 3647-3656 (2003)
- R. P. Agarwal, M. A. Alghamdi, N. Shahzad, Fixed point theory for cyclic generalized contractions in partial metric spaces, Fixed Point Theory Appl., 2012, 2012:40
- S. Banach, Sur les op ´erations dans les ensembles abstraits et leurs applications aux ´equations int ´egrales, Fund. Math. 3 (1922) 133-181.
- S. S. Basha, Best proximity point theorems generalizing the contraction principle. Nonlinear Anal. 74, 5844-5850 (2011)
- S. S. Basha, P. Veeramani, Best approximations and best proximity pairs. Acta. Sci. Math. (Szeged) 63, 289-300 (1997)
- S. S. Basha, P. Veeramani, Best proximity pair theorems for multifunctions with open fibres. J. Approx. Theory 103, 119-129 (2000)
- S. S. Basha, P. Veeramani, D.V. Pai, Best proximity pair theorems. Indian J. Pure Appl. Math. 32, 1237-1246 (2001)
- D. W. Boyd, J. S. W. Wong, On nonlinear contractions. Proc. Am. Math. Soc. 20, 458-464 (1969)
- B. S. Choudhury, K. P. Das, A new contraction principle in Menger spaces. Acta Math. Sin. 24(8), 1379-1386 (2008)
- A. A. Eldred, P. Veeramani, Existence and convergence of best proximity points. J. Math. Anal. Appl. 323, 1001-1006 (2006)
- K. Fan, Extensions of two fixed point theorems of F. E. Browder. Math. Z. 112, 234-240 (1969)
- T. Gnana-Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. TMA 65, 1379-1393 (2006)
- D. Guo, V. Lakshmikantham, Coupled fixed points of nonlinear operators with applications. Nonlinear Anal., Theory Methods Appl. 11 (1987) 623-632.
- E. Karapinar, Fixed point theory for cyclic weak φ-contraction, Appl. Math. Lett., 24 (2011) 822?825.
- E. Karapinar, K. Sadarangani, Fixed point theory for cyclic (phi,psi) contractions Fixed Point Theory Appl., 2011:69 ,(2011)
- E. Karapinar, I.M. Erhan, A.Y. Ulus, Fixed Point Theorem for Cyclic Maps on Partial Metric Spaces, Appl. Math. Inf. Sci. 6 (2012), no:1, 239-244.
- E. Karapinar, I.M. Erhan, Cyclic Contractions and Fixed Point Theorems, Filomat, 26 (2012),no:4, 777-782
- E. Karapinar, Best Proximity Points Of Cyclic Mappings, Appl. Math. Lett., 25 (2012), 1761-1766.
- S. Karpagam and S. Agrawal: Best proximity points theorems for cyclic Meir-Keeler contraction maps, Nonlinear Anal.,74,(2011) 1040-1046.
- W. A. Kirk, P. S. Srinavasan and P. Veeramani: Fixed points for mapping satisfying cylical contractive conditions, Fixed Point Theory, 4(2003), 79-89.
- G. S. R. Kosuru and P. Veeramani, Cyclic contractions and best proximity pair theorems, arXiv:1012.1434v2
- [math.FA] 29 May 2011, 14 pages.
- J. Merryfield, B. Rothschild, J.D.Jr. Stein, An application of Ramsey's theorem to the Banach contraction principle. Proc. Am. Math. Soc. 130(4), 927-33 (2002)
- C. Mongkolkeha, W. Sintunavarat, P. Kumam,: Fixed point theorems for contraction mappings in modular metric spaces. Fixed Point Theory Appl. 2011, 93 (2011)
- C. Mongkolkeha, P. Kumam, Best proximity point Theorems for generalized cyclic contractions in ordered metric spaces. J. Opt. Theory Appl. (2012) (in press), http://dx.doi.org/10.1007/s10957-012-9991-y
- J.P. Prolla, Fixed point theorems for set valued mappings and existence of best approximations. Numer. Funct. Anal. Optim. 5, 449-455 (1983)
- V. M. Sehgal, S. P. Singh, A generalization to multifunctions of Fan's best approximation theorem. Proc. Am. Math. Soc. 102, 534-537 (1988)
- V. M. Sehgal, S. P. Singh, A theorem on best approximations. Numer. Funct. Anal. Optim.10, 181-184 (1989)
- W. Sintunavarat, P. Kumam, Coupled best proxitmity point theorem in metric spaces. Fixed Point Theory Appl.2012/1/93 (2012).
- W. Sintunavarat, Y.J. Cho, P. Kumam, Coupled coincidence point theorems for contractions without commutative condition in intuitionistic fuzzy normed spaces. Fixed Point Theory Appl. 2011, 81 (2011)
- W. Sintunavarat, Y.J. Cho, P. Kumam, Coupled fixed point theorems for weak contraction mapping under F-invariant set. Abstr. Appl. Anal. 2012, 15 (Article ID 324874) (2012)
- W. Sintunavarat, P. Kumam,: Weak condition for generalized multi-valued (f, α, β)-weak contraction mappings. Appl. Math. Lett. 24, 460-465 (2011)
- W. Sintunavarat, P. Kumam,: Gregus type fixed points for a tangential multi-valued mappings satisfying contractive conditions of integral type. J. Inequal. Appl. 2011, 3 (2011)
- W. Sintunavarat, Y.J. Cho, Kumam, P: Common fixed point theorems for c-distance in ordered cone metric spaces. Comput. Math. Appl. 62, 1969-1978 (2011)
- W. Sintunavarat, P. Kumam,: Common fixed point theorems for a pair of weakly compatible mappings in fuzzy metric spaces. J. Appl. Math. 2011, 14 (Article ID 637958) (2011)
- W. Sintunavarat, P. Kumam,: Common fixed point theorems for hybrid generalized multivalued contraction mappings. Appl. Math. Lett. 25, 52-57 (2012)
- W. Sintunavarat, P. Kumam,: Common fixed point theorems for generalized operator classes and invariant approximations. J. Inequal. Appl. 2011, 67 (2011)
- W. Sintunavarat, P. Kumam,: Generalized common fixed point theorems in complex valued metric spaces and applications. J. Inequal. Appl. 2012, 84 (2012)
- W. Sintunavarat, P. Kumam, Coupled best proximity point theorem in metric spaces. Fixed Point Theory Appl. 2012, 93 (2012)
- T. Suzuki,: A generalized Banach contraction principle that characterizes metric completeness. Proc. Am. Math. Soc. 136(5), 1861-1869 (2008)
- T. Suzuki, M. Kikkawa, C. Vetro, The existence of best proximity points in metric spaces with the property UC, Nonlinear Analysis: Theory, Methods & Applications 71 (7?), 2918-2926 (2009)
- V. Vetrivel, P. Veeramani, P. Bhattacharyya, Some extensions of Fan's best approximation theorem. Numer. Funct. Anal. Optim. 13, 397-402 (1992)
- K. Wlodarczyk, R. Plebaniak, A. Banach, Best proximity points for cyclic and noncyclic set-valued relatively quasi-asymptotic contractions in uniform spaces. Nonlinear Anal. 70(9), 3332-3342 (2009)
- K. Wlodarczyk, R. Plebaniak, A. Banach, Erratum to: best proximity points for cyclic and noncyclic set-valued relatively quasi-asymptotic contractions in uniform spaces. Nonlinear Anal. 71, 3583-3586 (2009)
- K. Wlodarczyk, R. Plebaniak, A. Banach, Best proximity points for cyclic and noncyclic set-valued relatively quasi-asymptotic contractions in uniform spaces. Nonlinear Anal. 70, 3332-3341 (2009)
- K. Wlodarczyk, R. Plebaniak, C. Obczynski, Convergence theorems, best approximation and best proximity for set-valued dynamic systems of relatively quasi-asymptotic contractions in cone uniform spaces. Nonlinear Anal. 72, 794-805 (2010)