An Extended S-Iteration Scheme for G-Contractive Type Mappings in b-Metric Spaces with Graph

Main Article Content

Nilakshi Goswami
Nehjamang Haokip
Vishnu Narayan Mishra

Abstract

In this paper, we introduce an extended S-iteration scheme for G-contractive type mappings and prove ∆-convergence as well as strong convergence in a nonempty closed and convex subset of a uniformly convex and complete b-metric space with a directed graph. We also give a numerical example in support of our result and compare the convergence rate between the studied iteration and the modified S-iteration.

Article Details

References

  1. A. A. Abdelhakim, A convexity of functions on convex metric spaces of Takahashi and applications, J. Egypt. Math. Soc. 24 (2016), 348-354.
  2. R. P. Agarwal, D. ORegan and D. R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex. Anal. 8 (2007), 61-79.
  3. V. Berinde, Iterative Approximation of Fixed Points, Editura Efemeride, Baia Mare, 2002.
  4. R. L. Burden and J. D. Faires, Numerical Analysis, Brooks/Cole Cengage Learning, 9th edition, Boston, 2010.
  5. S. Czerwik, Contraction mappings in b-metric spaces, Acta. Math. Inform. Univ. Ostra. 1 (1993), 5-11.
  6. D. Das and N. Goswami, Some fixed point theorems on the sum and product of operators in tensor product spaces, Int. J. Pure Appl. Math. 109 (2016), no.3, 651-663.
  7. D. Das, N. Goswami and V.N. Mishra, Some results on fixed point theorems in Banach algebras, Int. J. Anal. Appl. 13 (2017), no. 1, 32-40.
  8. D. Das, N. Goswami and V.N. Mishra, Some results on the projective cone normed tensor product spaces over Banach algebras, (online available) Bol. Soc. Paran. Mat. (3s.) 38 (2020), no. 1, 197-221.
  9. Deepmala, A Study on Fixed Point Theorems for Nonlinear Contractions and its Applications, Ph.D. Thesis (2014), Pt. Ravishankar Shukla University, Raipur 492 010, Chhatisgarh, India.
  10. Deepmala and H. K. Pathak, A study on some problems on existence of solutions for nonlinear functional-integral equations, Acta Math. Sci. 33 B(5) (2013), 1305-1313.
  11. H. Fukhar-ud-din, Existence and approximation of fixed points in convex metric spaces, Carpathian J. Math. 30 (2014), 175-185.
  12. H. Fukhar-ud-din, One step iterative scheme for a pair of nonexpansive mappings in a convex metric space, Hacet. J. Math. Stat. 44 (2015), 1023-1031.
  13. N. Goswami, N. Haokip and V. N. Mishra, F-contractive type mappings in b-metric spaces and some related fixed point results, Fixed Point Theory and Applications 2019 (2019), 13.
  14. N. Haokip and N. Goswami, Some fixed point theorems for generalized Kannan type mappings in b-metric spaces, Proyecciones (Antofagasta) 38 (4) (2019), 763-782.
  15. S. Ishikawa, Fixed Point by a New Iteration Method, Proc. Amer. Math. Soc. 44 (1974), 147-150.
  16. G. Jungck, Commuting mappings and fixed points, Amer. Math. Monthly 83 (1976), 261-263.
  17. W. A. Kirk and W. O. Ray, A note on Lipschitzian mappings in convex metric spaces, Canad. Math. Bull. 20 (1977), 463-466.
  18. T. C. Lim, Remarks on some fixed point theorems, Proc. Amer. Math. Soc. 60 (1976), 179 182.
  19. X. Liu, M. Zhou, L.N. Mishra, V.N. Mishra and B. Damjanovi ´c, Common fixed point theorem of six self-mappings in Menger spaces using (CLRST ) property, Open Math. 16 (2018), 1423-1434.
  20. W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 44 (1953), 506-510.
  21. L. N. Mishra, H.M. Srivastava and M. Sen, On existence results for some nonlinear functional-integral equations in Banach algebra with applications, Int. J. Anal. Appl., 11 (2016), 1-10.
  22. L. N. Mishra, K. Jyoti, A. Rani and Vandana, Fixed point theorems with digital contractions image processing, Nonlinear Sci. Lett. A, 9 (2018), 104-115.
  23. L. N. Mishra, S. K. Tiwari, V. N. Mishra and I. A. Khan, Unique Fixed Point Theorems for Generalized Contractive Mappings in Partial Metric Spaces, J. Funct. Spaces, 2015 (2015), Article ID 960827, 8 pages.
  24. L. N. Mishra, S. K. Tiwari and V. N. Mishra, Fixed point theorems for generalized weakly S-contractive mappings in partial metric spaces, J. Appl. Anal. Comput. 5 (2015), 600-612.
  25. M. O. Olatinwo and C. O. Imoru, Some convergence results for the Jungck-Mann and Jungck-Ishikawa processes in the class of generalized Zamfirescu operators, Acta Math. Univ. Comenianae LXXVII (2008), 299-304.
  26. H. K. Pathak and Deepmala, Common fixed point theorems for PD-operator pairs under Relaxed conditions with applications, J. Comput. Appl. Math. 239 (2013), 103-113.
  27. B. Patir, N. Goswami and L. N. Mishra, Fixed point theorems in fuzzy metric spaces for mappings with some contractive type conditions, Korean J. Math. 26 (2018), 307-326.
  28. B. Patir, N. Goswami and V. N. Mishra, Some results on fixed point theory for a class of generalized nonexpansive mappings, Fixed Point Theory Appl. 2018 (2018), 19.
  29. T. Rasham, A. Shoaib, C. Park and M. Arshad, Fixed Point Results for a Pair of Multi Dominated Mappings on a Smallest Subset in K-Sequentially Dislocated quasi Metric Space with Application, J. Comput. Anal. Appl., 25 (5) (2018), 975-986.
  30. T. Rasham, A. Shoaib, N. Hussain, B. S. Alamri and M. Arshad, Multivalued Fixed Point Results in Dislocated b-Metric Spaces with Application to the System of Nonlinear Integral Equations, Symmetry, 11 (1) (2019), 40.
  31. T. Rasham, A. Shoaib, B. S. Alamri and M. Arshad, Fixed Point Results for Multivalued Contractive Mappings Endowed With Graphic Structure, J. Math. 2018 (2018) Article ID 5816364, 8 pages.
  32. T. Rasham, A. Shoaib, B. S. Alamri and M. Arshad, Multivalued fixed point results for new generalized F-Dominted contractive mappings on dislocated metric space with application, J. Funct. Spaces, 2018 (2018), Article ID 4808764, 12 pages.
  33. T. Rasham, A. Shoaib, B. A. S. Alamri, A. Asif and M. Arshad, Fixed Point Results for α *-ψ-Dominated Multivalued Contractive Mappings Endowed with Graphic Structure, Mathematics 7 (2019), 307.
  34. A. Razani and M. Bagherboum, Convergence and stability of Jungck-type iterative procedures in convex b-metric spaces, Fixed Point Theory Appl. 2013 (2013), 331.
  35. B. E. Rhoades, Comments on two fixed point iteration method, J. Math. Anal. Appl. 56 (1976), 741-750.
  36. G. S. Saluja, Strong and ∆-convergence of modified two-step iterations for nearly asymptotically nonexpansive mappings in hyperbolic spaces, Int. J. Anal. Appl. 8 (2015), 39-52.
  37. S. Shahzad and R. Al-Dubiban, Approximating common fixed points of nonexpansive mappings in Banach spaces, Georgian Math. J. 13 (2006), 529-537.
  38. T. Shimizu and W. Takahashi, Fixed points of multivalued mappings in certain convex metric spaces, Topol. Methods Nonlinear Anal. 8 (1996), 197-203.
  39. S. L. Singh, C. Bhatnagar and S. N. Mishra, Stability of Jungck-Type Iterative Procedures, Int. J. Math. Math. Sci. 19 (2005), 3035-3043.
  40. S. Suparatulatorn, W. Cholamjiak and S. Suantai, A modified S-iteration process for G-nonexpansive mappings in Banach spaces with graphs, Numer. Algorithms 77 (2017), 479-490.
  41. W. Takahashi, A convexity in metric spaces and nonexpansive mappings, Kodai Math. Sem. Rep. 22 (1970), 142-149.