On the Equiform Differential Geometry of AW(k)-Type Curves in Pseudo-Galilean 3-Space

Main Article Content

M. Khalifa Saad
H. S. Abdel-Aziz

Abstract

The aim of this paper is to study AW(k)-type (1 ≤ k ≤ 3) curves according to the equiform differential geometry of the pseudo-Galilean space G1 3. We give some geometric properties of AW(k) and weak AW(k)-type curves. Moreover, we give some relations between the equiform curvatures of these curves. Finally, examples of some special curves are given and plotted to support our main results.

Article Details

References

  1. I. Yaglom, A simple non-Euclidean geometry and its physical basis, Springer-Verlag, in New York, 1979.
  2. B. J. Pavkovic, Equiform geometry of curves in the isotropic spaces I 1 3 and I 2 3 , Rad JAZU, 1986, 39-44.
  3. B. J. Pavkovic and I. Kamenarovic, The equiform differential geometry of curves in the Galilean space G3, Glasnik Mat. 22 (42) (1987), 449-457.
  4. K. Arslan and A. West, Product submanifolds with pointwise 3-planar normal sections, Glasgow Math. J. 37 (1) (1995), 73-81.
  5. K. Arslan and C. Ozgur, Curves and surfaces of AW(k) -type, Geometry and topology of submanifolds IX, World Scientific, 1999, 21-26.
  6. M. Kulahci, M. Bektas and M. Ergut, On harmonic curvatures of null curves of the AW(k)-type in Lorentzian space, Z. Naturforsch. A, 63 (5-6) (2008), 248-252.
  7. M. Kulahci and M. Ergut, Bertrand curves of AW(k)-type in Lorentzian space, Nonlinear Anal., Theory Methods Appl. 70 (2009), 1725-1731.
  8. M. Kulahci, A.O. Ogrenmis and M. Ergut, New characterizations of curves in the Galilean space G3, Int. J. Phys. Math. Sci. 1 (2010), 49-57.
  9. C. Ozgur and F. Gezgin, On some curves of AW(k)-type, Differ. Geom. Dyn. Syst. 7 (2005), 74-80.
  10. D. W. Yoon, General Helices of AW(k)-Type in the Lie Group, J. Appl. Math. 2012 (2012), Article ID 535123.
  11. Z. Erjavec and B. Divjak, The equiform differential geometry of curves in the pseudo-Galilean space, Math. Commun. 13 (2008), 321-332.
  12. Z. Erjavec, On generalization of helices in the Galilean and the pseudo-Galilean space, J. Math. Res. 6 (3) (2014), 39-50.
  13. B. Divjak, The general solution of the Frenet's system of differential equations for curves in the pseudo-Galilean space G1 3 , Math. Commun. 2 (1997), 143-147.
  14. B. Divjak, Geometrija pseudogalilejevih prostora, Ph. D. thesis, University of Zagreb, 1997.
  15. B. Divjak, Curves in pseudo-Galilean geometry, Ann. Univ. Sci. Budapest. Sect. Math. 41 (1998), 117-128.