Spherical-Radial Multipliers on the Heisenberg Group
Main Article Content
Abstract
Let Hn be the (2n+1)-dimensional Heisenberg group. We consider a radial Fourier multiplier which is a spherical function on Hn and show that it is a Herz-Schur multiplier.
Article Details
References
- B. Astengo, D.B. Blasio, and F. Ricci. Gelfand Pairs on the Heisenberg Group and Schwartz Functions. J. Funct. Anal. 256 (5) (2009), 1565-1587.
- S. Bagchi. Fourier Multipliers on the Heisenberg groups revisited arXiv:1710.02822v2 [math.CA], 2017.
- C. Benson, J. Jenkins. Bounded K-Spherical Functions on the Heisenberg Groups.J. Funct. Anal. 105 (1992), 409-443.
- M. Bozejko, G. Fendler. Herz-Schur multipliers and uniformly bounded representations of discrete groups, Arch. Math. 57 (1991), 290-298.
- M.E. Egwe. Aspects of Harmonic Analysis on the Heisenberg group. Ph.D. Thesis, University of Ibadan, Ibadan, Nigeria, 2010.
- M.E. Egwe, U.N. Bassey. On Isomorphism Between Certain Group Algebras on the Heisenberg Group, J. Math. Phys. Anal. Geom. 9 (2) (2013), 150-164.
- M.E. Egwe. A K-Spherical-Type Solution for Invariant Differential Operators on the Heisenberg Group. Int. J. Math. Anal. 8 (30) 2014, 1475-1486.
- M.E. Egwe. The Equivalence of certain norms on the Heisenber group. Adv. Pure Math. 3 (6) (2013), 576-578.
- G.B. Folland, Harmonic analysis in phase space, Princeton University Press, Princeton, N.J, 1989.
- R. Gangolli. Spherical Functions on Semisimple Lie Groups. In: Symmetric Spaces, W. Boothy and G. Weiss (Eds.). Marcel Dekker, Inc. New York, 1972.
- S. Helgason, Groups and geometric analysis: integral geometry, invariant differential operators, and spherical functions, Academic Press, Orlando, 1984.
- R. Howe. On the role of the Heisenberg group in harmonic analysis. Bull. Amer. Math. Soc. 3 (1980), 821-843.
- G. Mauceri. Lp-Multipliers on the Heisenberg group. Michigan Math. J. 26 (1979), 361-371.
- F. Ricci. Fourier and Spectral Multipliers in RN and in the Heisenberg group. http://homepage.sns.it/fricci/papers/ multipliers.pdf
- F. Ricci, R.L. Rubin. Transferring Fourier Multipliers from SU(2) to the Heisenberg Group. Amer. J. Math. 108 (3) (1986), 571-588.
- S. Thangavelu. Spherical Means on the Heisenberg Group and a Restriction Theorem for the Symplectic Fourier Transform. Revista Math. Iberoamericana 7 (2) (1991), 135-165.
- S. Thangavelu, Harmonic Analysis on the Heisenberg Group, Birkh ¨auser Boston, Boston, MA, 1998.