Spherical-Radial Multipliers on the Heisenberg Group

Main Article Content

M.E. Egwe

Abstract

Let Hn be the (2n+1)-dimensional Heisenberg group. We consider a radial Fourier multiplier which is a spherical function on Hn and show that it is a Herz-Schur multiplier.

Article Details

References

  1. B. Astengo, D.B. Blasio, and F. Ricci. Gelfand Pairs on the Heisenberg Group and Schwartz Functions. J. Funct. Anal. 256 (5) (2009), 1565-1587.
  2. S. Bagchi. Fourier Multipliers on the Heisenberg groups revisited arXiv:1710.02822v2 [math.CA], 2017.
  3. C. Benson, J. Jenkins. Bounded K-Spherical Functions on the Heisenberg Groups.J. Funct. Anal. 105 (1992), 409-443.
  4. M. Bozejko, G. Fendler. Herz-Schur multipliers and uniformly bounded representations of discrete groups, Arch. Math. 57 (1991), 290-298.
  5. M.E. Egwe. Aspects of Harmonic Analysis on the Heisenberg group. Ph.D. Thesis, University of Ibadan, Ibadan, Nigeria, 2010.
  6. M.E. Egwe, U.N. Bassey. On Isomorphism Between Certain Group Algebras on the Heisenberg Group, J. Math. Phys. Anal. Geom. 9 (2) (2013), 150-164.
  7. M.E. Egwe. A K-Spherical-Type Solution for Invariant Differential Operators on the Heisenberg Group. Int. J. Math. Anal. 8 (30) 2014, 1475-1486.
  8. M.E. Egwe. The Equivalence of certain norms on the Heisenber group. Adv. Pure Math. 3 (6) (2013), 576-578.
  9. G.B. Folland, Harmonic analysis in phase space, Princeton University Press, Princeton, N.J, 1989.
  10. R. Gangolli. Spherical Functions on Semisimple Lie Groups. In: Symmetric Spaces, W. Boothy and G. Weiss (Eds.). Marcel Dekker, Inc. New York, 1972.
  11. S. Helgason, Groups and geometric analysis: integral geometry, invariant differential operators, and spherical functions, Academic Press, Orlando, 1984.
  12. R. Howe. On the role of the Heisenberg group in harmonic analysis. Bull. Amer. Math. Soc. 3 (1980), 821-843.
  13. G. Mauceri. Lp-Multipliers on the Heisenberg group. Michigan Math. J. 26 (1979), 361-371.
  14. F. Ricci. Fourier and Spectral Multipliers in RN and in the Heisenberg group. http://homepage.sns.it/fricci/papers/ multipliers.pdf
  15. F. Ricci, R.L. Rubin. Transferring Fourier Multipliers from SU(2) to the Heisenberg Group. Amer. J. Math. 108 (3) (1986), 571-588.
  16. S. Thangavelu. Spherical Means on the Heisenberg Group and a Restriction Theorem for the Symplectic Fourier Transform. Revista Math. Iberoamericana 7 (2) (1991), 135-165.
  17. S. Thangavelu, Harmonic Analysis on the Heisenberg Group, Birkh ¨auser Boston, Boston, MA, 1998.