# Bounds on Toeplitz Determinant for Starlike Functions with Respect to Conjugate Points

## Main Article Content

### Abstract

This paper is concerned with the estimate of the upper bounds of the Toeplitz determinants |T

_{2}(3)| and |T_{3}(3)| for functions belonging to the subclass of starlike functions with respect to conjugate points.*The results presented would extend the results for some existing subclasses in the literature.*## Article Details

### References

- I. Graham, Geometric function theory in one and higher dimensions, CRC Press, New York, 2003.
- S. S. Miller, P. T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl. 65(2) (1978), 289-305.
- S. S. Miller, P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J. 28(2) (1981), 157-172.
- R. M. El-Ashwah, D. K. Thomas, Some subclasses of close-to-convex functions, J. Ramanujan Math. Soc. 2(1) (1987), 85-100.
- S. Halim, Functions starlike with respect to other points, Int. J. Math. Math. Sci. 14(3) (1991), 451-456.
- S. A. F. M. Dahhar, A. Janteng, A subclass of starlike functions with respect to conjugate points, Int. Math. Forum, 4(28) (2009), 1373-1377.
- N. H. A. A. Wahid, D. Mohamad, S. Cik Soh, On a subclass of tilted starlike functions with respect to conjugate points, Menemui Mat. (Discover. Math.) 37(1) (2015), 1-6.
- K. Ye, L. H. Lim, Every matrix is a product of Toeplitz matrices, Found. Comput. Math. 16(3) (2016), 577-598.
- D. K. Thomas and S. A. Halim, Toeplitz matrices whose elements are the coefficients of starlike and close-to-convex functions, Bull. Malaysian Math. Sci. Soc. 40(4) (2016), 1781-1790.
- V. Radhika, S. Sivasubramanian, G. Murugusundaramoorthy, J. M. Jahangiri, Toeplitz matrices whose elements are the coefficients of functions with bounded boundary rotation, J. Complex Anal. 2016 (2016), Art. ID 4960704.
- S. Sivasubramanian, M. Govindaraj, G. Murugusundaramoorthy, Toeplitz matrices whose elements are the coefficients of analytic functions belonging to certain conic domains, Int. J. Pure Appl. Math. 109(10) (2016), 39-49.
- C. Ramachandran, D. Kavitha, Toeplitz determinant for some subclasses of analytic functions, Glob. J. Pure Appl. Math. 13(2) (2017), 785-793.
- N. Magesh, Ş. Altinkaya, S. Yalçın, Construction of Toeplitz matrices whose elements are the coefficients of univalent functions associated with q-derivative operator, ArXiv:1708.03600 [Math]. (2017).
- M. F. Ali, D. K. Thomas, A. Vasudevarao, Toeplitz determinants whose elements are the coefficients of analytic and univalent functions, Bull. Aust. Math. Soc. 97(2) (2018), 253-264.
- V. Radhika, J. M. Jahangiri, S. Sivasubramanian, G. Murugusundaramoorthy, Toeplitz matrices whose elements are coefficients of BazileviÄ functions, Open Math. 16(1) (2018), 1161-1169.
- H. M. Srivastava, Q. Z. Ahmad, N. Khan, B. Khan, Hankel and Toeplitz determinants for a subclass of q-starlike functions associated with a general conic domain, Mathematics, 7(2) (2019), 181.
- H. Y. Zhang, R. Srivastava, H. Tang, Third-order Hankel and Toeplitz determinants for starlike functions connected with the sine function, Mathematics, 7(5) (2019), 404.
- S. N. Al-Khafaji, A. Al-Fayadh, A. H. Hussain, S. A. Abbas, Toeplitz Determinant whose Its Entries are the Coefficients for Class of Non-Bazilevic Functions, J. Phys.: Conf. Ser. 1660 (2020), 012091.
- P. L. Duren, Univalent Functions vol. 259, Springer, New York-Berlin-Heidelberg-Tokyo, 1983.
- I. Efraimidis, A generalization of Livingston's coefficient inequalities for functions with positive real part, J. Math. Anal. Appl. 435(1) (2016), 369-379.