Exponentially Preinvex Fuzzy Mappings and Fuzzy Exponentially Mixed Variational-Like Inequalities

Main Article Content

Muhammad Bilal Khan
Muhammad Aslam Noor
Khalida Inayat Noor
Hassan Almusawa
Kottakkaran Sooppy Nisar


In this article, our aim is to consider a class of nonconvex fuzzy mapping known as exponentially preinvex fuzzy mapping. With the support of some examples, the notions of exponentially preinvex fuzzy mappings are explored and discussed in some special cases. Some properties are also derived and relations among the exponentially preinvex fuzzy mappings (exponentially preinvex-FMs), exponentially invex fuzzy mappings (exponentially-IFMs), and exponentially monotonicity are established under some mild conditions. In the end, using the fact that fuzzy optimization and fuzzy variational inequalities have close relationships, we have proven that the optimality conditions of exponentially preinvex fuzzy mapping can be distinguished by exponentially fuzzy variational-like inequality and exponentially fuzzy mixed variational-like inequality. These inequalities render the very interesting outcomes of our main results and appear to be the new ones. Presented results in this paper can be considered and the development of previously obtained results.

Article Details


  1. M. Adamek, On a problem connected with strongly convex functions, Math. Inequal. Appl. 19 (2016), 1287-1293.
  2. N. I. Akhiezer, The classical moment problem and some related questions in analysis, Oliver and Boyd, Edinburgh, 1965.
  3. G. Alirezaei, R. Mazhar, On exponentially concave functions and their impact in information theory, Inform. Theory Appl. Workshop, 9 (2018), 265-274.
  4. T. Antczak, (p,r)-Invex sets and functions, J. Optim. Theory Appl. 263 (2001), 355-379.
  5. M. Avriel, r-Convex functions, Math. Program. 2 (1972), 309-323.
  6. M. U. Awan, M. A. Noor, E. Set, et al. On strongly (p, h)-convex functions, TWMS J. Pure Appl. Math. 9 (2019), 145-153.
  7. A. Azcar, J. Gimnez, K. Nikodem, J. L. Sánchez, On strongly midconvex functions, Opuscula Math. 31 (2011), 15-26.
  8. B. Bede, S. G. Gal, Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations, Fuzzy Sets Syst. 151(3) (2005), 581-599.
  9. A. Ben-Isreal, B. Mond, What is invexity? Anziam J. 28 (1986), 1-9.
  10. S. N. Bernstein, Sur les fonctions absolument monotones, Acta Math. 52 (1929), 1-66.
  11. S. S. L. Chang, L. A. Zadeh, On fuzzy mapping and control, IEEE Trans. Syst., Man, Cybern. SMC-2 (1972), 30-34.
  12. S. S. Chang, Variational Inequality and Complementarity Problems Theory and Applications. Shanghai Scientific and Technological Literature Publishing House, Shanghai, (1991).
  13. D. Dubois, H. Prade, Operations on fuzzy numbers. Int. J. Syst. Sci. 9 (1978), 613-626.
  14. N. Furukawa, Convexity and local Lipschitz continuity of fuzzy-valued mappings. Fuzzy Sets Syst. 93 (1998), 113-119.
  15. Jr, R. Goetschel, W. Voxman, Elementary fuzzy calculus. Fuzzy Sets Syst. 18 (1986), 31-43.
  16. M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl. 80 (1980), 545-550.
  17. M. V. Jovanovic, A note on strongly convex and strongly quasi convex functions, Math. Notes, 60 (1966), 584-585.
  18. S. Karamardian, The nonlinear complementarity problem with applications, Part 2. J. Optim. Theory Appl. 4 (1969), 167-181.
  19. J. Li, M. A. Noor, On characterizations of preinvex fuzzy mappings, Computers Math. Appl. 59 (2010), 933-940.
  20. M. S. Mohan, S. K. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl. 189 (1995), 901-908.
  21. S. Nanda, K. Kar, Convex fuzzy mappings. Fuzzy Sets Syst. 48 (1992), 129-132.
  22. M. A. Noor, Fuzzy preinvex functions. Fuzzy Sets Syst. 64 (1994), 95-104.
  23. M. A. Noor, Variational-like inequalities, Optimization, 30 (1994), 323-330.
  24. M. A. Noor, Variational inequalities for fuzzy mappings. (III), Fuzzy Sets Syst. 110 (2000), 101-108.
  25. M. A. Noor, K. I. Noor, Exponentially convex functions, J. Orissa Math. Soc. 39 (2019), 33-51.
  26. M. A. Noor, K. I. Noor, Strongly exponentially convex functions, UPB Sci. Bull. Ser. A: Appl. Math. Phys. 81 (2019), 75-84.
  27. M. A. Noor, K. I. Noor, Strongly exponentially convex functions and their properties, J. Adv. Math. Stud. 12 (2019), 177-185.
  28. M. A. Noor, K. I. Noor, Some properties of exponentially preinvex functions, FACTA Univ. (NIS) Ser. Math. Inform. 34 (2019), 941-955.
  29. A. Rufián-Lizana, Y. Chalco-Cano, R. Osuna-Gómez, G. Ruiz-Garzón, On invex fuzzy mappings and fuzzy variational-like inequalities, Fuzzy Sets Syst. 200 (2012), 84-98.
  30. A. Rufián-Lizana, Y. Chalco-Cano, G. Ruiz-Garzón, H. Román-Flores, On some characterizations of preinvex fuzzy mappings, Top, 22 (2014), 771-783.
  31. Y. R. Syau, On convex and concave fuzzy mappings. Fuzzy Sets Syst. 103 (1999), 163-168.
  32. L. Stefanini, B. Bede, Generalized Hukuhara differentiability of interval-valued functions and interval differential equations, Nonlinear Anal., Theory Meth. Appl. 71 (2009), 1311-1328.
  33. Z. Wu, J. Xu, Generalized convex fuzzy mappings and fuzzy variational-like inequality, Fuzzy Sets Syst. 160 (2009), 1590-1619.
  34. Y. X. Zhao, S. Y. Wang, L. Coladas Uria, Characterizations of r-convex functions, J. Optim. Theory Appl. 145 (2010), 186-195.