Iterative Schemes for Triequilibrium-Like Problems
Main Article Content
Abstract
In this work, we present a new class of equilibrium problems, termed as triequilibrium-like problems with trifunction in invexity settings. Classical varilunational-like inequalities and equilibrium-like problems can be obtained as specific variants of triequilibrium-like problems. Certain new iterative methods are proposed and examined for the solution of triequilibrium-like problems by using auxiliary principle technique. Convergence analysis of these proposed methods is examined under some mild conditions.
Article Details
References
- F. Alvarez, On the minimization property of a second order dissipative system in Hilbert space, SIAM J. Control Optim. 38(2000), 1102-1119.
- F. Alvarez and H. Attouch, An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator damping, Set-Valued Anal. 9(2001), 3-11.
- A. Ben-Israel and B. Mond, What is invexity? J. Austral. Math. Soc. Ser. B. 28 (1986), 1-9.
- M.I. Bloach and M.A. Noor, Perturbed mixed variational-like inequalities, AIMS Math. 5(3)(2019), 2153-2162.
- E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student. 63(1994), 123-145.
- R. Glowinski, J. L. Lions and R. Tremolieres, Numerical analysis of variational inequalities, North-Holland, Amsterdam, 1981.
- F. Giannessi, A. Maugeri and P. M. Pardalos, Equilibrium Problems: Nonsmooth Optimization and Variational inequality Models, Kluwer Academic Publishers, Dordrecht, Holland, 2001.
- M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl. 80(1981), 545-550.
- J. L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math. 20(1967), 493-512.
- S.R. Mohan and S.K. Neogy, On invex set and preinvex functions, J. Math. Anal. Appl. 189 (1995), 901-908.
- B.B. Mohsen, M.A. Noor, K.I. Noor, and M. Postolache, Strongly convex functions of higher order involving bifunction, Mathematics, 7(11)(2019), 1028.
- M. A. Noor and W. Oettli, On general nonlinear complementarity problems and quasi-equilibria, Le Mathematiche, 49 (1994), 313-331.
- M. A. Noor, Variational-like inequalities, Optimization, 30(1994), 323-330.
- M. A. Noor, Proximal methods for mixed quasi variational inequalities, J. Optim. Theory Appl. 115(2002), 447-452.
- M. A. Noor, M. Akhter and K. I. Noor, Inertial proximal method for mixed quasi variational inequalities, Nonlinear Funct. Anal. Appl. 8(2003), 489-496.
- M. A. Noor, Fundamentals of mixed quasi variational inequalities, Int. J. Pure. Appl. Math. 15(2004), 137-250.
- M. A. Noor and K. I. Noor, On equilibrium problems, Appl. Math. E-Notes. 4(2004), 125-132.
- M. A. Noor, Mixed quasi invex equilibrium problems, Int. J. Math. Sci. 57(2004), 3057-3067.
- M. A. Noor, Auxiliary principle technique for equilibrium problems, J. Optim. Theory. Appl. 122(2004), 371-386.
- M. A. Noor, Some developments in general variational inequalities, Appl. Math. Comput. 251(2004), 199-277.
- M. A. Noor, Invex equilibrium problems, J. Math. Anal. Appl. 302(2005), 463-475
- M. A. Noor, Fundamentals of equilibrium problems, Math. Inequal. Appl. 9 (2006), 529-566.
- M. A. Noor, K. I. Noor and V. Gupta, On equilibrium- like problems, Appl. Anal. 86(2007), 807-818.
- M. A. Noor, K. I. Noor and M.I Baloch, Auxiliary principle technique for strongly mixed variational-like inequalities, U.P.B. Sci. Bull. Ser. A. 80(2018), 93-100.
- M. A. Noor, K. I. Noor, A. Hamdi and E. H. El-shemas, On difference of two monotone operators, Optim. Lett. 3(2009), 329.
- M. A. Noor, K. I. Noor and M. Th. Rassias, New trends in general variational inequalitis, Acta Appl. Math. 170(1)(2020), 981-1046.
- J. Parida and A. Sen, A variational-like inequality for multifunctions with applications, J. Math. Anal. Appl., 124(1987), 73-81.
- G. Stampacchia, Formes bilineaires coercitives sur les ensembles convexes, C. R. Acad. Sci. Paris, 258(1964), 4413-4416.
- T. Weir and V. Jeyakumar, A class of nonconvex functions and mathematical programming, Bull. Austral. Math. Soc. 38(1988), 177-189.
- T. Weir and B. Mond, Preinvex functions in multiple objective optimization, J. Math. Anal. Appl. 136(1988), 29-28.
- D.L. Zhu and P. Marcotte, Cocoercivity and its role in the convergence of iterative schemes for solving variational inequalities, SIAM J. Optim. 6(3)(1996), 714-726.