Common Fixed Point Theorems for Six Self-Mappings on S- Metric Spaces
Main Article Content
Abstract
In this paper, we introduce the concepts of common property - (E.A) and common limit range property for six self-mappings and prove common fixed point theorems of such mappings satisfying (ψ, φ)-weak contraction on an S-metric space. Examples are given to illustrate our results.
Article Details
References
- M. Aamri, D. El Moutawakil, Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl., 270 (2002), 181-188.
- M. Abbas, D. Doric, Common fixed point theorem for four mappings satisfying generalized weak contractive conditions, Filomat. 24(2) (2010), 1-10.
- M. Abbas, G. Jungck, Common fixed point results for non-commuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl. 341 (2008), 416-420.
- M. Abbas, M. S. Khan, Common fixed point theorem of two mappings satisfying a generalized weak contractive condition, Int. J. Math. Math. Sci. 2009 (2009), 131068.
- I.Y. Alber, S. Guerre-Delabriere, Principle of weakly contractive maps in Hilbert space, in: I. Gohberg and Y. Lyubich, (Eds.): New Results in Operator Theory and its Appl., Birkhnuser, Basel, Switzerland, 98 (1997), 7-22.
- I. Beg, M. Abbas, Coincidence point and invariant approximation for mappings satisfying generalized weak contractive condition, Fixed Point Theory Appl. 2006 (2006), 74503.
- V. Berinde, Approximating fixed points of weak φ-contractions, Fixed Point Theory. 4 (2003), 131-142.
- Y. J. Cho, P. P. Murthy, G. Jungck, A common fixed point theorems of Meir-Keeler type, Int. J. Math. Math. Sci. 16 (4) (1993), 669-674.
- B.S. Choudhury, P. Konor, B.E. Rhoades, N. Metiya, Fixed point theorems for generalized weakly contractive mapping, Nonlinear Anal.: Theory Meth. Appl. 74 (2011), 2116-2126.
- B.C. Dhage, Generalized metric space and mapping with fixed point, Bull. Cal. Math. Soc. 84 (1992), 329-336.
- B.C. Dhage, Generalized metric space and topological structure I, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S) 46 (2000), 3-24.
- B.C. Dhage, On generalized metric spaces and topological structure II, Pure. Appl. Math. Sci. 40 (1994), 37-41.
- H. Ding, Z. Kadelburg, E. Karapinar, S. Radenovic, Common fixed points of weak contractions in cone metric spaces, Abstr. Appl. Anal. 2012 (2012), 793862.
- N.V. Dung, N.T. Hieu, S. Radojevic, Fixed point theorems for g-monotone maps on partially ordered S-metric spaces, Filomat, 28 (9) (2014), 1885-1898.
- P.N. Dutta, B.S. Choudhury, A generalisation of contraction principle in metric spaces, Fixed Point Theory Appl. 2008 (2008), 406368.
- J.X. Fang, Y. Gao, Common fixed point theorems under strict contractive conditions in Menger spaces, Nonlinear Anal.: Theory Meth. Appl. 70 (1) (2009), 184-193.
- M. Imdad, B.D. Pant, S. Chauhan, Fixed point theorems in menger spaces using the (CLRST ) property and applications, J. Nonlinear Anal. Optim. 3 (2) (2012), 225-237.
- G. Jungck, B.E. Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math. 29 (3) (1998), 227-238.
- Y. Liu, J. Wu, Z. Li, Common fixed points of single-valued and multi-valued maps, Int. J. Math. Math. Sci. 19 (2005), 3045-3055.
- Y. Mahendra Singh, G.A. Hirankumar Sharma, M. R. Singh, Common fixed point theorems for (ψ, φ)- weak contractive conditions in metric spaces, Hacet. J. Math. Stat. 48 (5) (2019), 1398-1408.
- Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2006), 289-297.
- R.P. Pant, R- weakly commutativity and common fixed points, Soochow J. Math. 25 (1999), 37-42.
- H.K. Pathak, S.S. Chang, Y.J. Cho, Fixed point theorems for compatible mappings of type (P), Indian J. Math. 36 (2) (1994), 151-166.
- H.K. Pathak, Y.J. Cho, S.M. Kang, B. Madharia, Compatible mappings of type (C) and common fixed point theorem of Greguˇs type, Demonstr. Math. 31 (3) (1998), 499-517.
- H.K. Pathak, M.S. Khan, Compatible mappings of type (B) and common fixed point theorems of Greguˇs type, Czechoslovak Math. J. 45 (120) (1995), 685-698.
- S. Sedghi, N. Shobe, A. Aliouche, A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik, 64 (3) (2012), 258-266.
- S. Sedghi, N. Shobe, H. Zhou, A common fixed point theorem in D*-metric spaces, Fixed Point Theory Appl. 2007 (2007), 27906.
- S. Sedghi, N. Shobkolaei, M. Shahraki, T. Doˇsenovic, Common fixed point of four maps in S-metric spaces, Math. Sci. 12 (2018), 137-143.
- M.R. Singh, Th. Bimol Singh, Some results for α-(ψ, φ)- contractive mappings in S-metric spaces, J. Adv. Math. Stud. 14 (2) (2021), 279-293.
- M.R. Singh, G.A. Hirankumar Sharma, Y. Mahendra Singh, Common fixed points for weak contraction occasionally weakly biased mappings, Adv. Fixed Point Theory, 7 (4) (2017), 458-467.
- M.R. Singh, Y. Mahendra Singh, Compatible mappings of type (E) and common fixed point theorems of Meir-Keeler type, Int. J. Math. Sci. Engg. Appl. 1 (2) (2007), 299-315.
- M.R. Singh, Y. Mahendra Singh, On various types of compatible maps and common fixed point theorems for non-continuous maps, Hacet. J. Math. Stat., 40 (4) (2011), 503-513.
- W. Sintunavarat, P. Kumam, Common fixed point theorems for a pair of weakly compatible mappings in fuzzy metric spaces, J. Appl. Math. 2011 (2011), 637958.