Well-Posedness of Triequilibrium-Like Problems
Main Article Content
Abstract
This work emphasizes in presenting new class of equilibrium-like problems, termed as equilibrium-like problems with trifunction. We establish some metric characterizations for the well-posed triequilibrium-like problems. We give some conditions under which the equilibrium-like problems are strongly well-posed. Our results, which give essential and adequate conditions to the well-posedness of triequilibrium-like problems, are acquired by utilizing the assumption of pseudomonotonicity. Technique and ideas of this paper inspire further research in this dynamic field.
Article Details
References
- A. Ben-Israel and B. Mond, What is invexity?, J. Austral. Math. Soc. Ser. B. 28 (1986), 1-9. https://doi.org/10.1017/S0334270000005142.
- M. I. Bloach and M. A. Noor, Perturbed mixed variational-like inequalities, AIMS Math. 5(3) (2019), 2153-2162. https://doi.org/10.3934/math.2020143.
- E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student. 63 (1994), 123-145.
- R. Glowinski, J. L. Lions and R. Tremolieres, Numerical analysis of variational inequalities, North-Holland, Amsterdam, 1981.
- F. Giannessi and A. Maugeri, Variational Inequalities and Network Equilibrium Problems. Plenum Press, New York, 1995.
- F. Giannessi, A. Maugeri and P. M. Pardalos, Equilibrium Problems: Nonsmooth Optimization and Variational inequality Models, Kluwer Academic Publishers, Dordrecht, Holland, 2001.
- D. Goeleven and D. Mantaque, Well-posed hemivariational inequalities. Numer. Funct. Anal. Optim. 16 (1995), 909-921. https://doi.org/10.1080/01630569508816652.
- M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl. 80 (1981), 545-550. https://doi.org/10.1016/0022-247X(81)90123-2.
- R. Lucchetti and F. Patrone, A characterization of Tykhonov well-posedness for minimum problems with applications to variational inequalities. Numer. Funct. Anal. Optim. 3 (1981), 461-476. https://doi.org/10.1080/01630568108816100.
- R. Lucchetti and F. Patrone, Some properties of well-posed variational inequalities governed by linear operators. Numer. Funct. Anal. Optim. 5 (1983), 349-361. https://doi.org/10.1080/01630568308816145.
- S. R. Mohan and S. K. Neogy, On invex set and preinvex functions. J. Math. Anal. Appl. 189 (1995), 901-908. https://doi.org/10.1006/jmaa.1995.1057.
- T. V. Nghi1 and N. N. Tam, General variational inequalities: existence of solutions, Tikhonov-Type regularization, and well-posedness, Acta Math. Vietnam. (2021). https://doi.org/10.1007/s40306-021-00435-0.
- B. B. Mohsen, M. A. Noor, K. I. Noor and M. Postolache, Strongly convex functions of higher order involving bifunction, Mathematics, 7(11) (2019), 1028. https://doi.org/10.3390/math7111028.
- M. A. Noor, General variational inequalities. Appl. Math. Lett. 1 (1988), 119-121. https://doi.org/10.1016/0893-9659(88)90054-7.
- M. A. Noor, Variational-like inequalities. Optimization, 30 (1994), 323-330. https://doi.org/10.1080/02331939408843995.
- M. A. Noor, New approximation schemes for general variational inequalities. J. Math. Anal. Appl. 251 (2000), 217-229. https://doi.org/10.1006/jmaa.2000.7042.
- M. A. Noor, Merit function for variational–like inequalitiets, Math. Inequal. Appl. 1 (2000), 117-128.
- M. A. Noor, Well-posed variational inequalities. J. Appl. Math. Comput. 11 (2003), 165-172. https://doi.org/10.1007/BF02935729.
- M. A. Noor, Fundamentals of mixed quasi variational inequalities. Int. J. Pure. Appl. Math. 15 (2004), 137-250.
- M. A. Noor, Fundamentals of equilibrium problems. Math. Inequal. Appl. 9 (2006), 529-566. https://doi.org/10.7153/mia-09-51.
- M. A. Noor, Extended general variational inequalities. Appl. Math. Lett. 22(2) (2009), 182-186. https://doi.org/10.1016/j.aml.2008.03.007.
- M. A. Noor and K. I. Noor, Some new trends in mixed variational inequalities, J. Adv. Math. Stud. in press.
- M. A. Noor and W. Oettli, On general nonlinear complementarity problems and quasi-equilibria. Le Mathematiche, 49 (1994), 313-331.
- M. A. Noor, K. I. Noor and H. M. Y. Al-Bayatti, Higher order variational inequalities, Inf. Sci. Lett. 11 (2022), 1-5.
- M. A. Noor, K. I. Noor and M. I. Baloch, Auxiliary principle technique for strongly mixed variational-like inequalities. U.P.B. Sci. Bull. Ser. A, 80 (2018), 93-100.
- M. A. Noor, K. I. Noor, A. Hamdi and E. H. El-shemas, On difference of two monotone operators, Optim. Lett. 3 (2009), 329. https://doi.org/10.1007/s11590-008-0112-7.
- M.A. Noor, K.I. Noor, M.Th. Rassias, New trends in general variational inequalities, Acta Appl. Math. 170 (2020), 981–1064. https://doi.org/10.1007/s10440-020-00366-2.
- M. A. Noor, K. I. Noor, M. U. Awan and A. G. Khan, Quasi variational inclusions involving three operators, Inform. Sci. Lett. in press.
- G. Stampacchia, Formes bilineaires coercitives sur les ensembles convexes. C. R. Acad. Sci. Paris, 258 (1964), 4413-4416.
- T. Weir and B. Mond, Preinvex functions in multiple objective optimization. J. Math. Anal. Appl. 136 (1988), 29-38. https://doi.org/10.1016/0022-247X(88)90113-8.
- T. Weir and V. Jeyakumar, A class of nonconvex functions and mathematical programming. Bull. Austral. Math. Soc. 38 (1988), 177-189. https://doi.org/10.1017/S0004972700027441.