Fixed Points under ψ-α-β Conditions in Ordered Partial Metric Spaces
Main Article Content
Abstract
Recently, E. Karapinar and P. Salimi [Fixed point theorems via auxiliary functions, J. Appl. Math. 2012, Article ID 792174] have obtained fixed point results for increasing mappings in a partially ordered metric space using three auxiliary functions in the contractive condition. In this paper, these results are extended to 0-complete ordered partial metric spaces with a more general contractive condition. Examples are given showing that these extensions are proper.
Article Details
References
- S.G. Matthews, Partial metric topology, Proc. 8th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci. 728 (1994), 183-197.
- S. Romaguera, A Kirk type characterization of completeness for partial metric spaces, Fixed Point Theory Appl. (2010) Article ID 493298, 6 pages.
- T. Abdeljawad, E. Karapinar, K. Ta ¸s, Existence and uniqueness of a common fixed point on partial metric spaces, Appl. Math. Lett. 24 (2011), 1900-1904.
- E. Karapinar, I.M. Erhan, Fixed point theorems for operators on partial metric spaces, Appl. Math. Lett. 24 (2011), 1894-1899.
- C. Di Bari, Z. Kadelburg, H.K. Nashine, S. Radenovi ´c, Common fixed points of g-quasicontractions and related mappings in 0-complete partial metric spaces, Fixed Point Theory Appl. 2012:113 (2012), doi:10.1186/1687-1812-2012-113.
- N. Hussain, Z. Kadelburg, S. Radenovi ´c, F.R. Al-Solamy, Comparison functions and fixed point results in partial metric spaces, Abstract Appl. Anal. 2012, Article ID 605781, 15 pages, doi:10.1155/2012/605781.
- B.E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. 47 (2001), 2683- 2693.
- P.N. Dutta, B.S. Choudhury, A generalization of contraction principle in metric spaces, Fixed Point Theory Appl. (2008), Article ID 406368, doi:10.1155/2008/406368.
- B.S. Choudhury, A. Kundu, (ψ, α, β)-weak contractions in partially ordered metric spaces, Appl. Math. Lett. 25 (2012), 6-10.
- A.C.M. Ran, M.C.B. Reurings, A fixed point theorem in partially ordered sets and some application to matrix equations, Proc. Amer. Math. Soc. 132 (2004), 1435-1443.
- J. Harjani, K. Sadarangani, Fixed point theorems for weakly contractive mappings in partially ordered sets, Nonlinear Anal. 71 (2009), 3403-3410.
- J. Harjani, K. Sadarangani, Generalized contractions in partially ordered metric spaces and applications to ordinary differential equations, Nonlinear Anal. 72 (3-4) (2010), 1188-1197.
- S. Radenovi ´c, Z. Kadelburg, Generalized weak contractions in partially ordered metric spaces, Comput. Math. Appl. 60 (2010), 1776-1783.
- Z. Golubovi ´c, Z. Kadelburg, S. Radenovi ´c, Common fixed points of ordered gquasicontractions and weak contractions in ordered metric spaces, Fixed Point Theory Appl. 2012:20 (2012), doi:10.1186/1687-1812-2012-20.
- H. Aydi, E. Karapinar, B. Samet, Remarks on some recent fixed point theorems, Fixed Point Theory Appl. 2012:76 (2012), doi:10.1186/1687-1812-2012-76.
- E. Karapinar, P. Salimi, Fixed point theorems via auxiliary functions, J. Appl. Math. 2012, Article ID 792174, 9 pages, doi:10.1155/2012/792174.
- R.H. Haghi, Sh. Rezapour, N. Shahzad, Be careful on partial metric fixed point results, Topology Appl. 160 (2013), 450-454.
- H.K. Nashine, Z. Kadelburg, S. Radenovi ´c, Common fixed point theorems for weakly isotone increasing mappings in ordered partial metric spaces, Math. Comput. Modelling 57 (2013), 2355-2365.
- S. Radenovi ´c, Z. Kadelburg, D. Jandrli ´c and A. Jandrli ´c, Some results on weak contraction maps, Bull. Iranian Math. Soc. 38(3) (2012), 625-645.