Fixed Points under ψ-α-β Conditions in Ordered Partial Metric Spaces

Main Article Content

Zoran Kadelburg, Stojan Radenovic

Abstract

Recently, E. Karapinar and P. Salimi [Fixed point theorems via auxiliary functions, J. Appl. Math. 2012, Article ID 792174] have obtained fixed point results for increasing mappings in a partially ordered metric space using three auxiliary functions in the contractive condition. In this paper,  these results are extended to 0-complete ordered partial metric spaces with a more general contractive condition. Examples are given showing that these extensions are proper.

Article Details

References

  1. S.G. Matthews, Partial metric topology, Proc. 8th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci. 728 (1994), 183-197.
  2. S. Romaguera, A Kirk type characterization of completeness for partial metric spaces, Fixed Point Theory Appl. (2010) Article ID 493298, 6 pages.
  3. T. Abdeljawad, E. Karapinar, K. Ta ¸s, Existence and uniqueness of a common fixed point on partial metric spaces, Appl. Math. Lett. 24 (2011), 1900-1904.
  4. E. Karapinar, I.M. Erhan, Fixed point theorems for operators on partial metric spaces, Appl. Math. Lett. 24 (2011), 1894-1899.
  5. C. Di Bari, Z. Kadelburg, H.K. Nashine, S. Radenovi ´c, Common fixed points of g-quasicontractions and related mappings in 0-complete partial metric spaces, Fixed Point Theory Appl. 2012:113 (2012), doi:10.1186/1687-1812-2012-113.
  6. N. Hussain, Z. Kadelburg, S. Radenovi ´c, F.R. Al-Solamy, Comparison functions and fixed point results in partial metric spaces, Abstract Appl. Anal. 2012, Article ID 605781, 15 pages, doi:10.1155/2012/605781.
  7. B.E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. 47 (2001), 2683- 2693.
  8. P.N. Dutta, B.S. Choudhury, A generalization of contraction principle in metric spaces, Fixed Point Theory Appl. (2008), Article ID 406368, doi:10.1155/2008/406368.
  9. B.S. Choudhury, A. Kundu, (ψ, α, β)-weak contractions in partially ordered metric spaces, Appl. Math. Lett. 25 (2012), 6-10.
  10. A.C.M. Ran, M.C.B. Reurings, A fixed point theorem in partially ordered sets and some application to matrix equations, Proc. Amer. Math. Soc. 132 (2004), 1435-1443.
  11. J. Harjani, K. Sadarangani, Fixed point theorems for weakly contractive mappings in partially ordered sets, Nonlinear Anal. 71 (2009), 3403-3410.
  12. J. Harjani, K. Sadarangani, Generalized contractions in partially ordered metric spaces and applications to ordinary differential equations, Nonlinear Anal. 72 (3-4) (2010), 1188-1197.
  13. S. Radenovi ´c, Z. Kadelburg, Generalized weak contractions in partially ordered metric spaces, Comput. Math. Appl. 60 (2010), 1776-1783.
  14. Z. Golubovi ´c, Z. Kadelburg, S. Radenovi ´c, Common fixed points of ordered gquasicontractions and weak contractions in ordered metric spaces, Fixed Point Theory Appl. 2012:20 (2012), doi:10.1186/1687-1812-2012-20.
  15. H. Aydi, E. Karapinar, B. Samet, Remarks on some recent fixed point theorems, Fixed Point Theory Appl. 2012:76 (2012), doi:10.1186/1687-1812-2012-76.
  16. E. Karapinar, P. Salimi, Fixed point theorems via auxiliary functions, J. Appl. Math. 2012, Article ID 792174, 9 pages, doi:10.1155/2012/792174.
  17. R.H. Haghi, Sh. Rezapour, N. Shahzad, Be careful on partial metric fixed point results, Topology Appl. 160 (2013), 450-454.
  18. H.K. Nashine, Z. Kadelburg, S. Radenovi ´c, Common fixed point theorems for weakly isotone increasing mappings in ordered partial metric spaces, Math. Comput. Modelling 57 (2013), 2355-2365.
  19. S. Radenovi ´c, Z. Kadelburg, D. Jandrli ´c and A. Jandrli ´c, Some results on weak contraction maps, Bull. Iranian Math. Soc. 38(3) (2012), 625-645.