On the Solutions of the Second Kind Nonlinear Volterra-Fredholm Integral Equations via Homotopy Analysis Method

Main Article Content

A. S. Rahby
M. A. Abdou
G. A. Mosa

Abstract

In this paper, we discuss the existence and uniqueness of the solution of the second kind nonlinear Volterra-Fredholm integral equations (NV-FIEs) which appear in mathematical modeling of many phenomena, using Picard’s method. In addition, we use Banach fixed point theorem to show the solvability of the first kind NV-FIEs. Moreover, we utilize the homotopy analysis method (HAM) to approximate the solution and the convergence of the method is investigated. Finally, some examples are presented and the numerical results are discussed to show the validity of the theoretical results.

Article Details

References

  1. G.A. Mosa, M.A. Abdou, A.S. Rahby, Numerical Solutions for Nonlinear Volterra-Fredholm Integral Equations of the Second Kind With a Phase Lag, AIMS Math. 6 (2021), 8525–8543. https://doi.org/10.3934/math.2021495.
  2. M.A. Abdou, M.N. Elhamaky, A.A. Soliman, G.A. Mosa, The Behaviour of the Maximum and Minimum Error for Fredholm-Volterra Integral Equations in Two-Dimensional Space, J. Interdiscip. Math. 24 (2021), 2049–2070. https://doi.org/10.1080/09720502.2020.1814497.
  3. C. Constanda, M.E. Pérez, Integral Methods in Science and Engineering, Volume 1. Birkhäuser, Boston, 2010. https://doi.org/10.1007/978-0-8176-4899-2.
  4. K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge University Press, Cambridge, 1997. https://doi.org/10.1017/CBO9780511626340.
  5. A. Jerri, Introduction to Integral Equations with Applications, John Wiley & Sons, 1999.
  6. M.M. El-Borai, M.A. Abdou, M.M. El-Kojok, On a Discussion of Nonlinear Integral Equation of Type VolterraFredholm, J. Korean Soc. Ind. Appl. Math. 10 (2006), 59–83.
  7. A.M. Wazwaz, Linear and Nonlinear Integral Equations: Methods and Applications, Springer Berlin, Heidelberg, 2011. https://doi.org/10.1007/978-3-642-21449-3.
  8. S.M. Zemyan, Classical Theory of Integral Equations: A Concise Treatment, Birkhäuser Boston, MA, 2012. https://doi.org/10.1007/978-0-8176-8349-8.
  9. S. Yousefi, M. Razzaghi, Legendre Wavelets Method for the Nonlinear Volterra-Fredholm Integral Equations, Math. Computers Simul. 70 (2005), 1–8. https://doi.org/10.1016/j.matcom.2005.02.035.
  10. M. Cui, H. Du, Representation of Exact Solution for the Nonlinear Volterra-fredholm Integral Equations, Appl. Math. Comput. 182 (2006), 1795–1802. https://doi.org/10.1016/j.amc.2006.06.016.
  11. N. Bildik, M. Inc, Modified Decomposition Method for Nonlinear Volterra-Fredholm Integral Equations, Chaos Solitons Fractals. 33 (2007), 308–313. https://doi.org/10.1016/j.chaos.2005.12.058.
  12. M. Ghasemi, M.T. Kajani, E. Babolian, Numerical Solutions of the Nonlinear Volterra-Fredholm Integral Equations by Using Homotopy Perturbation Method, Appl. Math. Comput. 188 (2007), 446–449. https://doi.org/10.1016/j.amc.2006.10.015.
  13. Y. Ordokhani, M. Razzaghi, Solution of Nonlinear Volterra-Fredholm-Hammerstein Integral Equations via a Collocation Method and Rationalized Haar Functions, Appl. Math. Lett. 21 (2008), 4–9. https://doi.org/10.1016/j.aml.2007.02.007.
  14. S.A. Yousefi, A. Lotfi, M. Dehghan, He’s Variational Iteration Method for Solving Nonlinear Mixed VolterraFredholm Integral Equations, Computers Math. Appl. 58 (2009), 2172–2176. https://doi.org/10.1016/j.camwa.2009.03.083.
  15. E. Hashemizadeh, K. Maleknejad, B. Basirat, Hybrid Functions Approach for the Nonlinear Volterra-Fredholm Integral Equations, Procedia Computer Sci. 3 (2011), 1189–1194. https://doi.org/10.1016/j.procs.2010.12.192.
  16. H.R. Marzban, H.R. Tabrizidooz, M. Razzaghi, A Composite Collocation Method for the Nonlinear Mixed VolterraFredholm-Hammerstein Integral Equations, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 1186–1194. https://doi.org/10.1016/j.cnsns.2010.06.013.
  17. K. Maleknejad, E. Hashemizadeh, B. Basirat, Computational Method Based on Bernstein Operational Matrices for Nonlinear Volterra-Fredholm-Hammerstein Integral Equations, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 52–61. https://doi.org/10.1016/j.cnsns.2011.04.023.
  18. K. Parand, J.A. Rad, Numerical Solution of Nonlinear Volterra-Fredholm-Hammerstein Integral Equations via Collocation Method Based on Radial Basis Functions, Appl. Math. Comput. 218 (2012), 5292–5309. https://doi.org/10.1016/j.amc.2011.11.013.
  19. F. Mirzaee, A.A. Hoseini, Numerical Solution of Nonlinear Volterra-Fredholm Integral Equations Using Hybrid of Block-Pulse Functions and Taylor Series, Alexandria Eng. J. 52 (2013), 551–555. https://doi.org/10.1016/j.aej.2013.02.004.
  20. Z. Chen, W. Jiang, An Efficient Algorithm for Solving Nonlinear Volterra-Fredholm Integral Equations, Appl. Math. Comput. 259 (2015), 614–619. https://doi.org/10.1016/j.amc.2015.02.079.
  21. Z. Gouyandeh, T. Allahviranloo, A. Armand, Numerical Solution of Nonlinear Volterra-Fredholm-Hammerstein Integral Equations via Tau-Collocation Method With Convergence Analysis, J. Comput. Appl. Math. 308 (2016), 435–446. https://doi.org/10.1016/j.cam.2016.06.028.
  22. S. Liao, Homotopy Analysis Method in Nonlinear Differential Equations, Springer Berlin, Heidelberg, 2012. https://doi.org/10.1007/978-3-642-25132-0.
  23. L. Shijun, Homotopy Analysis Method: A New Analytic Method for Nonlinear Problems, Appl. Math. Mech. 19 (1998), 957–962. https://doi.org/10.1007/bf02457955.
  24. Y. Cherruault, Convergence of Adomian’s Method, Kybernetes. 18 (1989), 31–38. https://doi.org/10.1108/eb005812.