Generalized Ulam-Hyers Stability Results of a Quadratic Functional Equation in Felbin’s Type Fuzzy Normed Linear Spaces
Main Article Content
Abstract
This paper presents the generalized Ulam-Hyers stability of the following quadratic functional equation
F((x+y)/2 – z) + f(y+z)/2 – x) + f((z+x)/2 – y) = 3/4(f(z−x) + f(z−y) + f(x−y))
in Felbin’s type fuzzy normed linear spaces (f-NLS) using direct and fixed point methods.
Article Details
References
- J. Aczel, J. Dhombres, Functional Equations in Several Variables, Cambridge University Press, Cambridge, 1989.
- T. Aoki, On the Stability of the linear Transformation in Banach Spaces, J. Math. Soc. Japan. 2 (1950), 64-66. https://doi.org/10.2969/jmsj/00210064.
- M. Arunkumar, S. Karthikeyan, Solution and Stability of n-Dimensional Additive Functional Equation, Int. J. Appl. Math. 25 (2012), 163-174.
- I.S. Chang, E.H. Lee, H.M. Kim, On the Hyers-Ulam-Rassias Stability of a Quadratic Functional Equations, Math. Ineq. Appl. 6 (2003), 87-95.
- S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, 2002.
- S. Czerwik, On the Stability of the Quadratic Mapping in Normed Spaces, Abh. Math. Semin. Univ. Hambg. 62 (1992), 59–64. https://doi.org/10.1007/BF02941618.
- D.K. Singha, S. Grover, On the Stability of a Sum Form Functional Equation Related to Entropies of Type (α, β), J. Nonlinear Sci. Appl. 14 (2021), 168-180. https://doi.org/10.22436/jnsa.014.03.06.
- C. Felbin, Finite Dimensional Fuzzy Normed Linear Space, Fuzzy Sets Syst. 48 (1992), 239–248. https://doi.org/10.1016/0165-0114(92)90338-5.
- P. Gavruta, A Generalization of the Hyers-Ulam-Rassias Stability of Approximately Additive Mappings, J. Math. Anal. Appl. 184 (1994), 431–436. https://doi.org/10.1006/jmaa.1994.1211.
- T.E. Gantner, R.C. Steinlage, R.H. Warren, Compactness in Fuzzy Topological Spaces, J. Math. Anal. Appl. 62 (1978), 547–562. https://doi.org/10.1016/0022-247X(78)90148-8.
- E.S. El-Hady, On Hyperstability of Cauchy Functional Equation in (2, γ)-Banach Spaces, J. Math. Computer Sci. 23 (2021), 354-363. https://doi.org/10.22436/jmcs.023.04.08.
- D.H. Hyers, On the Stability of the Linear Functional Equation, Proc. Nat. Acad. Sci. 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222.
- U. Höhle, Fuzzy Real Numbers as Dedekind Cuts With Respect to a Multiple-Valued Logic, Fuzzy Sets Syst. 24 (1987), 263–278. https://doi.org/10.1016/0165-0114(87)90027-3.
- D.H. Hyers, G. Isac, T.M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Basel, 1998.
- K.-W. Jun, H.-M. Kim, On the Stability of an N-Dimensional Quadratic and Additive Functional Equation, Math. Inequal. Appl. 9 (2006), 153–165. https://doi.org/10.7153/mia-09-16.
- S.M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001.
- Pl. Kannappan, Functional Equations and Inequalities with Applications, Springer, New York, 2009.
- S. Karthikeyan, C. Park, P. Palani, T.R.K. Kumar, Stability of an Additive-Quartic Functional Equation in Modular Spaces, J. Math. Computer Sci. 26 (2021), 22–40. https://doi.org/10.22436/jmcs.026.01.04.
- O. Kaleva, S. Seikkala, On Fuzzy Metric Spaces, Fuzzy Sets Syst. 12 (1984), 215–229. https://doi.org/10.1016/0165-0114(84)90069-1.
- O. Kaleva, The Completion of Fuzzy Metric Spaces, J. Math. Anal. Appl. 109 (1985), 194-198.
- O. Kaleva, A Comment on the Completion of Fuzzy Metric Spaces, Fuzzy Sets Syst. 159 (2008), 2190–2192. https://doi.org/10.1016/j.fss.2008.03.011.
- H.-M. Kim, On the Stability Problem for a Mixed Type of Quartic and Quadratic Functional Equation, J. Math. Anal. Appl. 324 (2006), 358–372. https://doi.org/10.1016/j.jmaa.2005.11.053.
- R. Lowen, Fuzzy Set Theory, (Ch. 5: Fuzzy real numbers), Kluwer, Dordrecht, 1996.
- J.B. Diaz, B. Margolis, A Fixed Point Theorem of the Alternative, for Contractions on a Generalized Complete Metric Space, Bull. Amer. Math. Soc. 74 (1968), 305-309.
- F. Moradlou, S. Rezaee, I. Sadeqi, Stability of Cauchy Functional Equation in Felbin’s Type Spaces: A Fixed Point Approach, Submitted.
- A.K. Mirmostafaee, M.S. Moslehian, Fuzzy Versions of Hyers–ulam–rassias Theorem, Fuzzy Sets Syst. 159 (2008), 720–729. https://doi.org/10.1016/j.fss.2007.09.016.
- J.M. Rassias, On Approximation of Approximately Linear Mappings by Linear Mappings, J. Funct. Anal. 46 (1982), 126–130. https://doi.org/10.1016/0022-1236(82)90048-9.
- T.M. Rassias, On the Stability of the Linear Mapping in Banach Spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300. https://doi.org/10.1090/S0002-9939-1978-0507327-1.
- T.M. Rassias, On the Stability of Functional Equations and a Problem of Ulam, Acta Appl. Math. 62 (2000), 23–130. https://doi.org/10.1023/A:1006499223572.
- T.M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Acedamic Publishers, Dordrecht, 2003.
- K. Ravi, M. Arunkumar, J.M. Rassias, Ulam Stability for the Orthogonally General Euler-Lagrange Type Functional Equation, Int. J. Math. Stat. 3 (2008), 36-46.
- J.M. Rassias, R. Saadati, G. Sadeghi, J. Vahidi, On Nonlinear Stability in Various Random Normed Spaces, J. Inequal. Appl. 2011 (2011), 62. https://doi.org/10.1186/1029-242X-2011-62.
- J.M. Rassias, N. Pasupathi, R. Saadati, M. de la Sen, Approximation of Mixed Euler-Lagrange σ-Cubic-Quartic Functional Equation in Felbin’s Type f-NLS, J. Funct. Spaces. 2021 (2021), 8068673. https://doi.org/10.1155/2021/8068673.
- S.E. Rodabaugh, Fuzzy Addition in the L-Fuzzy Real Line, Fuzzy Sets Syst. 8 (1982), 39–52. https://doi.org/10.1016/0165-0114(82)90028-8.
- I. Sadeqi, F. Moradlou, M. Salehi, On Approximate Cauchy Equation in Felbin’s Type Fuzzy Normed Linear Spaces, Iran. J. Fuzzy Syst. 10 (2013), 51-63. https://doi.org/10.22111/ijfs.2013.862.
- I. Sadeqi, M. Salehi, Fuzzy Compact Operators and Topological Degree Theory, Fuzzy Sets Syst. 160 (2009), 1277–1285. https://doi.org/10.1016/j.fss.2008.08.014.
- S.M. Ulam, Problems in Modern Mathematics, Science Editions, Wiley, New York, 1964.
- J. Xiao, X. Zhu, On Linearly Topological Structure and Property of Fuzzy Normed Linear Space, Fuzzy Sets Syst. 125 (2002), 153–161. https://doi.org/10.1016/S0165-0114(00)00136-6.
- J. Xiao, X. Zhu, Topological Degree Theory and Fixed Point Theorems in Fuzzy Normed Space, Fuzzy Sets Syst. 147 (2004), 437–452. https://doi.org/10.1016/j.fss.2004.01.003.