An Extension of a Variational Inequality in the Simader Theorem to a Variable Exponent Sobolev Space and Applications: The Dirichlet Case
Main Article Content
Abstract
In this paper, we shall extend a fundamental variational inequality which is developed by Simader in W1,p to a variable exponent Sobolev space W1,p(·). The inequality is very useful for the existence theory to the Poisson equation with the Dirichlet boundary conditions in Lp(·)-framework, where Lp(·) denotes a variable exponent Lebesgue space. Furthermore, we can also derive the existence of weak solutions to the Stokes problem in a variable exponent Lebesgue space.
Article Details
References
- C. Amrouche, N.H. Seloula, L p -theory for vector potentials and Sobolev’s inequalities for vector fields: application to the Stokes equations with pressure boundary conditions, Math. Models Methods Appl. Sci. 23 (2013), 37-92. https://doi.org/10.1142/S0218202512500455.
- C. Amrouche, V. Girault, Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czech. Math. J. 44 (1994), 109-140.
- J. Aramaki, Equivalent relations with the J. L. Lions lemma in a variable exponent Sobolev space and an application to the Korn inequality, submitted.
- J. Aramaki, Equivalent relations with the J. L. Lions lemma in a variable exponent Sobolev space and their applications, submitted.
- J. Aramaki, An extension of a variational inequality in the Simader theorem to a variational exponent Sobolev space and applications: The Neumann case, submitted.
- J. Aramaki, On the J.L. Lions Lemma and its Applications to the Maxwell-Stokes Type Problem and the Korn Inequality, Commun. Math. Res. 37 (2021), 209–235. https://doi.org/10.4208/cmr.2020-0043.
- F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Springer, New York, 2010.
- P.G. Ciarlet, G. Dinca, A Poincaré inequality in a Sobolev space with a variable exponent, Chin. Ann. Math. Ser. B. 32 (2011), 333–342. https://doi.org/10.1007/s11401-011-0648-1.
- S.G. Deng, Eigenvalues of the p(x)-Laplacian Steklov problem, J. Math. Anal. Appl. 339 (2008), 925–937. https://doi.org/10.1016/j.jmaa.2007.07.028.
- L. Diening, Theoretical and numerical results for electrorheological fluids, PH.D. Thesis, University of Freiburg, Germany 2002.
- L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponent. Lecture Notes in Math., Springer, Berlin, 2017.
- X.-L. Fan, Q.-H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal.: Theory Methods Appl. 52 (2003), 1843–1852. https://doi.org/10.1016/S0362-546X(02)00150-5.
- X. Fan, Q. Zhang, D. Zhao, Eigenvalues of p(x)-Laplacian Dirichlet problem, J. Math. Anal. Appl. 302 (2005), 306–317. https://doi.org/10.1016/j.jmaa.2003.11.020.
- X. Fan, D. Zhao, On the spaces L p(x) (Ω) and Wm,p(x) (Ω), J. Math. Anal. Appl. 263 (2001), 424–446. https://doi.org/10.1006/jmaa.2000.7617.
- D. Fujiwara, H. Morimoto, An Lr -theorem of the Helmholtz decomposition of vector fields, J. Fac. Sci. Univ. Tokyo, Sec. I, 24 (1977), 685-700.
- G. Galdi. An introduction to the mathematical theory of the Navier-Stokes equations, Linearized Steady Problem, Vol. 38 of Tracts in Natural Philosophy, Springer, New York, 1994.
- D. Gilbarg, N.S. Trudinger, Elliptic partial differential equations of second order, Springer, Berlin, Heidelberg, New York, 1998.
- T.C. Halsey, Electrorheological fluids, Science. 258 (1992), 761–766. https://doi.org/10.1126/science.258.5083.761.
- O. Ková˘cik, J. Rákosnic, On spaces L p(x) (Ω) and Wk ,p(x) (Ω), Czechoslovak Math. J. 41 (1991), 592-618.
- H. Kozono, T. Yanagisawa, Global div-curl lemma on bounded domains in R 3 , J. Funct. Anal. 256 (2009), 3847- 3859.
- M. Mihăilescu, V. Rădulescu, A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. R. Soc. A. 462 (2006), 2625–2641. https://doi.org/10.1098/rspa.2005.1633.
- T. Miyakawa, On nonstationary solutions of the Navier-Stokes equations in an exterior domain, Hiroshima Math. J. 12 (1982), 115-140.
- M. Růžička, Electrotheological fluids: Modeling and mathematical theory, Lecture Notes in Mathematics, Vol. 1784, Berlin, Springer-Verlag, 2000.
- C.G. Simader, H. Sohr, A new approach to the Helmholtz decomposition and the Neumann problem in L q -spaces for bounded and exterior domains, in: G.P. Galdi (Ed.), Mathematical Problem Relating to the Navier-Stokes Equations, in; Ser. Adv. Math. Appl. Sci., World Scientific, Singapore, New Jersey, London, Hong Kong, (1992), 1-35.
- C.G. Simader, The Dirichlet problem for the laplacian in bounded and unbounded domains, Pitman Res. Noes Math. Ser., Vol. 360, Longman, 1996,
- Z. Wei, Z. Chen, Existence results for the p(x)-Laplacian with nonlinear boundary condition, ISRN Appl. Math. 2012 (2012), 727398.
- Z. Yücedağ, Solutions of nonlinear problems involving p(x)-Laplacian operator, Adv. Nonlinear Anal. 4 (2015), 285–293. https://doi.org/10.1515/anona-2015-0044.
- D. Zhao, W.J. Qiang, X.L. Fan, On generalized Orlicz space L p(x) (Ω), J. Gansu Sci. 9 (1996), 1-7 (in Chinese).
- V.V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR Izv. 29 (1987), 33–66. https://doi.org/10.1070/IM1987v029n01ABEH000958.