On Magnetic Curves According to Killing Vector Fields in Euclidean 3-Space

Main Article Content

M. Khalifa Saad
H. S. Abdel-Aziz
Haytham A. Ali


In the geometric theory of space curves, a magnetic field generates magnetic flow. The trajectories of magnetic flow are called magnetic curves. In the present paper, we obtain magnetic curves corresponding to killing magnetic fields in Euclidean 3-space E3. The magnetic curves of the spherical indicatrices of the tangent, principal normal and binormal for a regular space curve are said to be meant curves. Also, we investigate the magnetic curves of the tangent indicatrix and obtain the trajectories of the magnetic fields called TT-magnetic, NT-magnetic and BT-magnetic curves. Finally, some computational examples in support of our main results are given and plotted.

Article Details


  1. M.P. Do Carmo, Differential Geometry of Curves and Surfaces, Prentice Hall, Englewood Cliffs, 1976.
  2. R. Talman, Geometric Mechanics: Toward a Unification of Classical Physics, second ed., Wiley-VCH, New York, 2007.
  3. A. Comtet, On the Landau Levels on the Hyperbolic Plane, Ann. Phys. 173 (1987), 185–209. https://doi.org/10.1016/0003-4916(87)90098-4.
  4. T. Sunada, Magnetic Flows on a Riemann Surface, in: Proceedings of KAIST Mathematics Workshop, (1993), 93-108.
  5. T. Adachi, Kähler Magnetic Fields on a Complex Projective Space, Proc. Japan Acad. Ser. A Math. Sci. 70 (1994). https://doi.org/10.3792/pjaa.70.12.
  6. T. Adachi, Kähler Magnetic Flows for a Manifold of Constant Holomorphic Sectional Curvature, Tokyo J. Math. 18 (1995). https://doi.org/10.3836/tjm/1270043477.
  7. J.L. Cabrerizo, M. Fernández, J.S. Gómez, The Contact Magnetic Flow in 3D Sasakian Manifolds, J. Phys. A: Math. Theor. 42 (2009), 195201. https://doi.org/10.1088/1751-8113/42/19/195201.
  8. J.L. Cabrerizo, M. Fernández, J.S. Gómez, On the Existence of Almost Contact Structure and the Contact Magnetic Field, Acta Math. Hung. 125 (2009), 191–199. https://doi.org/10.1007/s10474-009-9005-1.
  9. S.L. Druţă-Romaniuc, M.I. Munteanu, Magnetic Curves Corresponding to Killing Magnetic Fields in E3, J. Math. Phys. 52 (2011), 113506. https://doi.org/10.1063/1.3659498.
  10. M.I. Munteanu, A.I. Nistor, The Classification of Killing Magnetic Curves in S2×R, J. Geom. Phys. 62 (2012), 170-182. https://doi.org/10.1016/j.geomphys.2011.10.002.
  11. M. Barros, A. Romero, Magnetic Vortices, Europhys. Lett. 77 (2007), 34002. https://doi.org/10.1209/0295-5075/77/34002.
  12. J. Koenderink, Solid Shape, MIT Press, Cambridge, MA, 1990.
  13. B. O’Neil, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, Inc., New York, 1983.
  14. H.H. Hacisalihoglu, Differential Geometry, Ankara University, Faculty of Science Press, 2000.
  15. D.J. Struik, Lectures in Classical Differential Geometry, Addison Wesley, Reading, MA, 1961.
  16. İ. Arslan and H. H. Hacısalihoğlu, On the Spherical Representatives of a Curve, Int. J. Contemp. Math. Sciences, 4 (2009), 1665-1670.
  17. S. Yılmaz, E. Özyılmaz, M. Turgut, New Spherical Indicatrices and Their Characterizations, An. Şt. Univ. Ovidius Constanta, 18 (2010), 337-354.
  18. M. Barros, J.L. Cabrerizo, M. Fernández, A. Romero, Magnetic Vortex Filament Flows, J. Math. Phys. 48 (2007), 082904. https://doi.org/10.1063/1.2767535.