Real Harmonic Analysis on the Special Orthogonal Group

Main Article Content

Taeyoung Lee


This paper presents theoretical analysis and software implementation for real harmonics analysis on the special orthogonal group. Noncommutative harmonic analysis for complex-valued functions on the special orthogonal group has been studied extensively. However, it is customary to treat real harmonic analysis as a special case of complex harmonic analysis, and there have been limited results developed specifically for real-valued functions. Here, we develop a set of explicit formulas for real-valued irreducible unitary representations on the special orthogonal group, and provide several operational properties, such as derivatives, sampling, and Clebsch-Gordon coefficients. Furthermore, we implement both of complex and real harmonics analysis on the special orthogonal group into an open source software package that utilizes parallel processing through the OpenMP library. The efficacy of the presented results are illustrated by benchmark studies and an application to spherical shape matching.

Article Details


  1. Data Announcement 88-Mgg-02, Digital Relief of the Surface of the Earth. National Oceanic and Atmospheric Administration (1988).
  2. L.C. Biedenharn, J.D. Louck, Angular Momentum in Quantum Physics: Theory and Application, Addison-Wesley Pub. Co., Advanced Book Program, Reading, Mass, 1981.
  3. M.A. Blanco, M. Flórez, M. Bermejo, Evaluation of the Rotation Matrices in the Basis of Real Spherical Harmonics, J. Mol. Struct.: THEOCHEM. 419 (1997), 19–27.
  4. G. Chirikjian, A. Kyatkin, Engineering Applications of Noncommutative Harmonic Analysis, CRC Press, Boca Raton, FL (2001).
  5. T.S. Cohen, M. Geiger, J. Koehler, M. Welling, Spherical CNNs, ArXiv:1801.10130 [Cs, Stat]. (2018).
  6. L. Dagum, R. Menon, OpenMP: An Industry Standard API for Shared-Memory Programming, IEEE Comput. Sci. Eng. 5 (1998) 46–55.
  7. J.R. Driscoll, D.M. Healy, Computing Fourier Transforms and Convolutions on the 2-Sphere, Adv. Appl. Math. 15 (1994), 202–250.
  8. Google, Google Test. (2018).
  9. K.I. Gross, On the Evolution of Noncommutative Harmonic Analysis, Amer. Math. Mon. 85 (1978), 525–548.
  10. G. Guennebaud, B. Jacob, et al. Eigen v3. (2010).
  11. J. Ivanic, K. Ruedenberg, Rotation Matrices for Real Spherical Harmonics. Direct Determination by Recursion, J. Phys. Chem. 100 (1996), 6342–6347.
  12. J. Ivanic, K. Ruedenberg, Rotation Matrices for Real Spherical Harmonics. Direct Determination by Recursion, J. Phys. Chem. A. 102 (1998), 9099–9100.
  13. P.J. Kostelec, D.N. Rockmore, FFTs On the Rotation Group, J. Fourier Anal. Appl. 14 (2008), 145–179.
  14. T. Lee, Stochastic Optimal Motion Planning for the Attitude Kinematics of a Rigid Body With Non-Gaussian Uncertainties, J. Dyn. Syst. Measure. Control. 137 (2015), 034502.
  15. D. Marinucci, G. Peccati, Random Fields on the Sphere. The London Mathematical Society (2011).
  16. F. Peter, H. Weyl, Die vollständigkeit der primitiven darstellungen einer geschlossenen kontinuierlichen gruppe. Math. Ann. 97 (1927), 735–755.
  17. T. Risbo, Fourier Transform Summation of Legendre Series and D-Functions, J. Geodesy. 70 (1996), 383–396.
  18. R.P. Sherman, R. Grinter, Transformation Matrices for the Rotation of Real p, d, and f Atomic Orbitals, J. Mol. Struct.: THEOCHEM. 135 (1986), 127–133.
  19. H. Sorensen, D. Jones, M. Heideman, C. Burrus, Real-Valued Fast Fourier Transform Algorithms, IEEE Trans. Acoust., Speech, Signal Process. 35 (1987), 849–863.
  20. W. Straub, Efficient Computation of Clebsch-Gordon Coefficients. Tech. Rep. (2014).
  21. D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii, Quantum Theory of Angular Momentum, World Scientific, 1988.