Analytical Solution of Nonlinear Fractional Gradient-Based System Using Fractional Power Series Method

Main Article Content

Radwan Abu-Gdairi

Abstract

This paper adapted a reliable treatment technique, called the fractional residual power series, to the fractional gradient-based system in solving a class of nonlinear programming model in Caputo’s sense. The gradient-based system has been constructed to transform the nonlinear programming problem with equality constraints to unconstrained optimization problem, and then the fractional residual power series method is implemented to obtain the essential behavior of underlying problem. The proposed methods have been applied effectively to produce optimal solution in rapidly convergent fractional series representations without linearization, or any limitations. To confirm the performance of the proposed methods, some optimization problems are tested. Further, numerical comparisons with other existing methods are also given. The results exhibit that the FRPS method is easy, simple, effective, and fully compatible with the complexity of such models.

Article Details

References

  1. W. Sun, Y.X. Yuan, Optimization Theory and Methods: Nonlinear Programming, Springer-Verlag, New York (2006).
  2. N. Özdemir, F. Evirgen, Solving NLP Problems With Dynamic System Approach Based on Smoothed Penalty Function, Selcuk J. Appl. Math. 10 (2009), 63–73. https://hdl.handle.net/20.500.12462/4852.
  3. H. Yamashita, A Differential Equation Approach to Nonlinear Programming, Math. Program. 18 (1980), 155–168. https://doi.org/10.1007/bf01588311.
  4. M. Al-Smadi, O.A. Arqub, D. Zeidan, Fuzzy Fractional Differential Equations Under the Mittag-Leffler Kernel Differential Operator of the ABC Approach: Theorems and Applications, Chaos Solitons Fractals. 146 (2021), 110891. https://doi.org/10.1016/j.chaos.2021.110891.
  5. A.V. Fiacco, G.P. Mccormick. Nonlinear Programming: Sequential Unconstrained Minimization Techniques, John Wiley, New York (1968).
  6. C.A. Botsaris, Differential Gradient Methods, J. Math. Anal. Appl. 63 (1978), 177–198. https://doi.org/10.1016/0022-247x(78)90114-2.
  7. M. Al‐Smadi, Fractional Residual Series for Conformable Time‐Fractional Sawada–Kotera–Ito, Lax, and Kaup–Kupershmidt Equations of Seventh Order, Math Methods Appl. Sci. (2021). https://doi.org/10.1002/mma.7507.
  8. A.A. Brown, M.C. Bartholomew-Biggs, ODE Versus SQP Methods for Constrained Optimization, J. Optim. Theory Appl. 62 (1989), 371–386. https://doi.org/10.1007/bf00939812.
  9. J. Schropp, I. Singer, A Dynamical Systems Approach to Constrained Minimization, Numer. Funct. Anal. Optim. 21 (2000), 537–551. https://doi.org/10.1080/01630560008816971.
  10. S. Wang, X.Q. Yang, K.L. Teo, A Unified Gradient Flow Approach to Constrained Nonlinear Optimization Problems, Comput. Optim. Appl. 25 (2003), 251–268. https://doi.org/10.1023/a:1022973608903.
  11. M. Al-Smadi, O.A. Arqub, Computational Algorithm for Solving Fredholm Time-Fractional Partial Integrodifferential Equations of Dirichlet Functions Type With Error Estimates, Appl. Math. Comput. 342 (2019), 280–294. https://doi.org/10.1016/j.amc.2018.09.020.
  12. L. Jin, L.W. Zhang, X.T. Xiao, Two Differential Equation Systems for Equality-Constrained Optimization, Appl. Math. Comput. 190 (2007), 1030–1039. https://doi.org/10.1016/j.amc.2006.11.041.
  13. M. Al-Smadi, A. Freihat, H. Khalil, S. Momani, R. Ali Khan, Numerical Multistep Approach for Solving Fractional Partial Differential Equations, Int. J. Comput. Methods. 14 (2017), 1750029. https://doi.org/10.1142/s0219876217500293.
  14. N. Andrei, Gradient Flow Algorithm for Unconstrained Optimization, ICI Technical Report, 2004.
  15. L. Jin, A Stable Differential Equation Approach for Inequality Constrained Optimization Problems, Appl. Math. Comput. 206 (2008), 186–192. https://doi.org/10.1016/j.amc.2008.09.007.
  16. N. Özdemir, F. Evirgen, A Dynamic System Approach to Quadratic Programming Problems With Penalty Method, Bull. Malays. Math. Sci. Soc. (2) 33 (2010), 79–91.
  17. S. Hasan, M. Al-Smadi, A. El-Ajou, et al. Numerical Approach in the Hilbert Space to Solve a Fuzzy Atangana-Baleanu Fractional Hybrid System, Chaos Solitons Fractals. 143 (2021) 110506. https://doi.org/10.1016/j.chaos.2020.110506.
  18. A. Qazza, R. Hatamleh, M. Al-hawari, Dirichlet Problem in the Simply Connected Domain, Bounded by Unicursal Curve, Int. J. Appl. Math. 22 (2009), 599-614.
  19. A. Qazza, R. Hatamleh, Dirichlet Problem in the Simply Connected Domain, Bounded by the Nontrivial Kind, Adv. Differ. Equ. Control Processes, 17 (2016), 177-188.
  20. R. Saadeh, M. Alaroud, M. Al-Smadi, et al. Application of Fractional Residual Power Series Algorithm to Solve Newell–Whitehead–Segel Equation of Fractional Order, Symmetry. 11 (2019), 1431. https://doi.org/10.3390/sym11121431.
  21. R. Edwan, R. Saadeh, S. Hadid, M. Al-Smadi, S. Momani, Solving Time-Space-Fractional Cauchy Problem with Constant Coefficients by Finite-Difference Method, in: D. Zeidan, S. Padhi, A. Burqan, P. Ueberholz (Eds.), Computational Mathematics and Applications, Springer Singapore, Singapore, 2020: pp. 25–46. https://doi.org/10.1007/978-981-15-8498-5_2.
  22. A. Burqan, A. El-Ajou, R. Saadeh, M. Al-Smadi, A New Efficient Technique Using Laplace Transforms and Smooth Expansions to Construct a Series Solution to the Time-Fractional Navier-Stokes Equations, Alexandria Eng. J. 61 (2022), 1069–1077. https://doi.org/10.1016/j.aej.2021.07.020.
  23. R. Saadeh, A. Qazza, A. Burqan, A New Integral Transform: ARA Transform and Its Properties and Applications, Symmetry. 12 (2020), 925. https://doi.org/10.3390/sym12060925.
  24. M. Al-Smadi, N. Djeddi, S. Momani, et al. An attractive numerical algorithm for solving nonlinear CaputoFabrizio fractional Abel differential equation in a Hilbert space, Adv. Differ. Equ. 2021 (2021), 271. https://doi.org/10.1186/s13662-021-03428-3.
  25. S.A. El-Wakil, A. Elhanbaly, M.A. Abdou, Adomian Decomposition Method for Solving Fractional Nonlinear Differential Equations, Appl. Math. Comput. 182 (2006), 313-324. https://doi.org/10.1016/j.amc.2006.02.055.
  26. M. Al-Smadi, H. Dutta, S. Hasan, S. Momani, On Numerical Approximation of Atangana-BaleanuCaputo Fractional Integro-Differential Equations Under Uncertainty in Hilbert Space, Math. Model. Nat. Phenom. 16 (2021), 41. https://doi.org/10.1051/mmnp/2021030.
  27. A. Khan, A. Khan, M. Sinan, Ion Temperature Gradient Modes Driven Soliton and Shock by Reduction Perturbation Method for Electron-Ion Magneto-Plasma, Math. Model. Numer. Simul. Appl. 2 (2022), 1- 12. https://doi.org/10.53391/mmnsa.2022.01.001.
  28. F. Evirgen, Conformable Fractional Gradient Based Dynamic System for Constrained Optimization Problem, Acta Phys. Pol. A. 132 (2017), 1066–1069. https://doi.org/10.12693/aphyspola.132.1066.
  29. F. Evirgen, M. Yavuz, An Alternative Approach for Nonlinear Optimization Problem With Caputo - Fabrizio Derivative, ITM Web Conf. 22 (2018), 01009. https://doi.org/10.1051/itmconf/20182201009.
  30. A. Alvarado-Sánchez, E. Rangel-Cortes, A. Hernández-Hernández, Bi-Dimensional Crime Model Based on Anomalous Diffusion With Law Enforcement Effect, Math. Model. Numer. Simul. Appl. 2 (2022), 26–40. https://doi.org/10.53391/mmnsa.2022.01.003.
  31. O. Abu Arqub. Series Solution of Fuzzy Differential Equations Under Strongly Generalized Differentiability, J. Adv. Res. Appl. Math. 5 (2013), 31-52. https://doi.org/10.5373/jaram.1447.051912.
  32. M. Alaroud, M. Al-Smadi, R.R. Ahmad, et al. Computational Optimization of Residual Power Series Algorithm for Certain Classes of Fuzzy Fractional Differential Equations, Int. J. Differ. Equ. 2018 (2018), 8686502. https://doi.org/10.1155/2018/8686502.
  33. S. Hasan, M. Al-Smadi, H. Dutta, et al. Multi-Step Reproducing Kernel Algorithm for Solving Caputo– Fabrizio Fractional Stiff Models Arising in Electric Circuits, Soft Comput. 26 (2022), 3713–3727. https://doi.org/10.1007/s00500-022-06885-4.
  34. S. Momani, N. Djeddi, M. Al-Smadi, S. Al-Omari, Numerical Investigation for Caputo-Fabrizio Fractional Riccati and Bernoulli Equations Using Iterative Reproducing Kernel Method, Appl. Numer. Math. 170 (2021), 418-434. https://doi.org/10.1016/j.apnum.2021.08.005.
  35. M. Al-Smadi, O. Abu Arqub, S. Momani, Numerical Computations of Coupled Fractional Resonant Schrödinger Equations Arising in Quantum Mechanics Under Conformable Fractional Derivative Sense, Physica Scripta, 95 (2020), 075218. https://doi.org/10.1088/1402-4896/ab96e0.
  36. A. Elsaid. Fractional Differential Transform Method Combined With the Adomian Polynomials, Appl. Math. Comput. 218 (2012), 6899-6911. https://doi.org/10.1016/j.amc.2011.12.066.
  37. A. Freihet, S. Hasan, M. Al-Smadi, et al. Construction of Fractional Power Series Solutions to Fractional Stiff System Using Residual Functions Algorithm, Adv. Differ. Equ. 2019 (2019), 95. https://doi.org/10.1186/s13662-019-2042-3.
  38. M. Al-Smadi, O. Abu Arqub, S. Hadid. An Attractive Analytical Technique for Coupled System of Fractional Partial Differential Equations in Shallow Water Waves With Conformable Derivative, Commun. Theor. Phys. 72 (2020), 085001. https://doi.org/10.1088/1572-9494/ab8a29.
  39. M. Al-Smadi, O. Abu Arqub, S. Hadid, Approximate solutions of nonlinear fractional Kundu-Eckhaus and coupled fractional massive Thirring equations emerging in quantum field theory using conformable residual power series method, Physica Scripta, 95 (2020), 105205. https://doi.org/10.1088/1402-4896/abb420.
  40. M. Al-Smadi, A. Freihat, O. Abu Arqub, et al. A Novel Multistep Generalized Differential Transform Method for Solving Fractional-Order Lü Chaotic and Hyperchaotic Systems, J. Comput. Anal. Appl. 19 (2015), 713–724.
  41. M. Alabedalhadi, M. Al-Smadi, S. Al-Omari, et al. New Optical Soliton Solutions for Coupled Resonant Davey-Stewartson System With Conformable Operator, Opt. Quant. Electron. 54 (2022), 392. https://doi.org/10.1007/s11082-022-03722-8.
  42. I. Podlubny, Fractional Differential Equation, Academic Press, San Diego, 1999.
  43. M. Alabedalhadi, M. Al-Smadi, S. Al-Omari, et al. Structure of Optical Soliton Solution For Nonliear Resonant Space-Time Schrödinger Equation In Conformable Sense With Full Nonlinearity Term, Physica Scripta, 95 (2020), 105215. https://doi.org/10.1088/1402-4896/abb739.
  44. Z. Altawallbeh, M. Al-Smadi, I. Komashynska, A. Ateiwi, Numerical Solutions of Fractional Systems of Two-Point BVPs by Using the Iterative Reproducing Kernel Algorithm, Ukr. Math J. 70 (2018), 687–701. https://doi.org/10.1007/s11253-018-1526-8.
  45. A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006.
  46. S. Hasan, M. Al-Smadi, A. Freihet, et al.Two Computational Approaches for Solving a Fractional Obstacle System in Hilbert Space, Adv. Differ. Equ. 2019 (2019), 55. https://doi.org/10.1186/s13662-019-1996-5.
  47. S. Momani, O. Abu Arqub, A. Freihat, et al. Analytical Approximations for Fokker-Planck Equations of Fractional Order in Multistep Schemes, Appl. Comput. Math. 15 (2016), 319-330.
  48. M. Al‐Smadi, O. Abu Arqub, M. Gaith, Numerical Simulation of Telegraph and Cattaneo Fractional‐Type Models Using Adaptive Reproducing Kernel Framework, Math. Meth. Appl. Sci. 44 (2020), 8472-8489. https://doi.org/10.1002/mma.6998.
  49. R. Abu-Gdairi, M. Al-Smadi, G. Gumah, An Expansion Iterative Technique for Handling Fractional Differential Equations Using Fractional Power Series Scheme, J. Math. Stat. 11 (2015), 29-38. https://doi.org/10.3844/jmssp.2015.29.38.