Analysis of Vector-host SEIR-SEI Dengue Epidemiological Model

Main Article Content

Md Rifat Hasan
Aatef Hobiny
Ahmed Alshehri

Abstract

Approximately worldwide 50 nations are still infected with the deadly dengue virus. This mosquito-borne illness spreads rapidly. Epidemiological models can provide fundamental recommendations for public health professionals, allowing them to analyze variables impacting disease prevention and control efforts. In this paper, we present a host-vector mathematical model that depicts the Dengue virus transmission dynamics utilizing a susceptible-exposed-infected-recovered (SEIR) model for the human interacting with a susceptible-exposed-infected (SEI) model for the mosquito. Using the Next Generation Technique, the basic reproduction number of the model is calculated. The local stability shows that if R0<1 the system is asymptotically stable and the disease dies out, otherwise unstable. The Lyapunov function is also used to evaluate the global stability of disease-free and endemic equilibrium points. To analyze the effect of the crucial aspects of the disease's transmission and to validate the analytical findings, numerical simulations of a variety of compartments have been constructed using MATLAB. The sensitivity analysis of the epidemic model is performed to establish the relative significance of the model parameters to disease transmission.

Article Details

References

  1. S. Hasan, S. Jamdar, M. Alalowi, S. Al Ageel Al Beaiji, Dengue Virus: A Global Human Threat: Review of Literature, J. Int. Soc. Prevent. Communit. Dent. 6 (2016), 1-6.https://doi.org/10.4103/2231-0762.175416.
  2. S.K. Roy, S. Bhattacharjee, Dengue Virus: Epidemiology, Biology, and Disease Aetiology, Can. J. Microbiol. 67 (2021), 687–702. https://doi.org/10.1139/cjm-2020-0572.
  3. N. Sharma, R. Singh, J. Singh, O. Castillo, Modeling Assumptions, Optimal Control Strategies and Mitigation Through Vaccination to Zika Virus, Chaos Solitons Fractals. 150 (2021), 111137. https://doi.org/10.1016/j.chaos.2021.111137.
  4. M.O. Faruk, S.N. Jannat, Md.S. Rahman, Impact of Environmental Factors on the Spread of Dengue Fever in Sri Lanka, Int. J. Environ. Sci. Technol. 19 (2022), 10637–10648.https://doi.org/10.1007/s13762-021-03905-y.
  5. R. Prasad, S.K. Sagar, S. Parveen, R. Dohare, Mathematical Modeling in Perspective of Vector-Borne Viral Infections: A Review, Beni-Suef Univ. J. Basic. Appl. Sci. 11 (2022), 102. https://doi.org/10.1186/s43088-022-00282-4.
  6. G. Bhuju, G.R. Phaijoo, D.B. Gurung, Sensitivity and Bifurcation Analysis of Fuzzy SEIR-SEI Dengue Disease Model, J. Math. 2022 (2022), 1927434. https://doi.org/10.1155/2022/1927434.
  7. C.J. Tay, M. Fakhruddin, I.S. Fauzi, S.Y. Teh, M. Syamsuddin, N. Nuraini, E. Soewono, Dengue Epidemiological Characteristic in Kuala Lumpur and Selangor, Malaysia, Mathematics and Computers in Simulation. 194 (2022), 489–504. https://doi.org/10.1016/j.matcom.2021.12.006.
  8. A. Abidemi, N.A.B. Aziz, Analysis of Deterministic Models for Dengue Disease Transmission Dynamics With Vaccination Perspective in Johor, Malaysia, Int. J. Appl. Comput. Math. 8 (2022), 45. https://doi.org/10.1007/s40819-022-01250-3.
  9. R. Aleixo, F. Kon, R. Rocha, M.S. Camargo, R.Y. De Camargo, Predicting Dengue Outbreaks with Explainable Machine Learning, in: 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid), IEEE, Taormina, Italy, 2022: pp. 940–947.https://doi.org/10.1109/CCGrid54584.2022.00114.
  10. A. Sow, C. Diallo, H. Cherifi, Effects of Vertical Transmission and Human Contact on Zika Dynamics, Complexity. 2022 (2022), 5366395. https://doi.org/10.1155/2022/5366395.
  11. N.H. Sweilam, S.M. AL-Mekhlafi, S.A. Shatta, Optimal Bang-Bang Control for Variable-Order Dengue Virus; Numerical Studies, J. Adv. Res. 32 (2021), 37–44.https://doi.org/10.1016/j.jare.2021.03.010.
  12. A. Abidemi, M.I. Abd Aziz, R. Ahmad, Vaccination and Vector Control Effect on Dengue Virus Transmission Dynamics: Modelling and Simulation, Chaos Solitons Fractals. 133 (2020), 109648. https://doi.org/10.1016/j.chaos.2020.109648.
  13. J.K.K. Asamoah, E. Yankson, E. Okyere, G.-Q. Sun, Z. Jin, R. Jan, Fatmawati, Optimal Control and Cost-Effectiveness Analysis for Dengue Fever Model With Asymptomatic and Partial Immune Individuals, Results Phys. 31 (2021), 104919. https://doi.org/10.1016/j.rinp.2021.104919.
  14. L.J.S. Allen, A.M. Burgin, Comparison of Deterministic and Stochastic SIS and SIR Models in Discrete Time, Math. Biosci. 163 (2000), 1–33. https://doi.org/10.1016/s0025-5564(99)00047-4.
  15. A.K. Misra, A. Sharma, J. Li, A Mathematical Model for Control of Vector Borne Diseases Through Media Campaigns, Discrete Continuous Dyn. Syst. - B. 18 (2013) 1909–1927.https://doi.org/10.3934/dcdsb.2013.18.1909.
  16. W. Nur, H. Rachman, N.M. Abdal, M. Abdy, S. Side, SIR Model Analysis for Transmission of Dengue Fever Disease with Climate Factors Using Lyapunov Function, J. Phys.: Conf. Ser. 1028 (2018), 012117. https://doi.org/10.1088/1742-6596/1028/1/012117.
  17. P. Saha, G.C. Sikdar, U. Ghosh, Transmission Dynamics and Control Strategy of Single-Strain Dengue Disease, Int. J. Dynam. Control. (2022). https://doi.org/10.1007/s40435-022-01027-y.
  18. D.N. Fisman, A.L. Greer, A.R. Tuite, Bidirectional Impact of Imperfect Mask Use on Reproduction Number of COVID-19: A Next Generation Matrix Approach, Infect. Dis. Model. 5 (2020), 405–408. https://doi.org/10.1016/j.idm.2020.06.004.
  19. N.I. Hamdan, A. Kilicman, Sensitivity Analysis in a Dengue Fever Transmission Model: A Fractional Order System Approach, J. Phys.: Conf. Ser. 1366 (2019), 012048. https://doi.org/10.1088/1742-6596/1366/1/012048.
  20. P. Hiram Guzzi, F. Petrizzelli, T. Mazza, Disease Spreading Modeling and Analysis: A Survey, Briefings Bioinform. 23 (2022), bbac230. https://doi.org/10.1093/bib/bbac230.
  21. A. Dwivedi, R. Keval, Analysis for Transmission of Dengue Disease With Different Class of Human Population, Epidemiol. Methods. 10 (2021), 20200046. https://doi.org/10.1515/em-2020-0046.
  22. M.A. Khan, Fatmawati, Dengue Infection Modeling and Its Optimal Control Analysis in East Java, Indonesia, Heliyon. 7 (2021), e06023. https://doi.org/10.1016/j.heliyon.2021.e06023.
  23. L. Pimpi, S.W. Indratno, J.W. Puspita, E. Cahyono, Stochastic and Deterministic Dynamic Model of Dengue Transmission Based on Dengue Incidence Data and Climate Factors in Bandung City, Commun. Biomath. Sci. 5 (2022), 78–89. https://doi.org/10.5614/cbms.2022.5.1.5.
  24. P. Mutsuddy, S. Tahmina Jhora, A.K.M. Shamsuzzaman, S.M.G. Kaisar, M.N.A. Khan, Dengue Situation in Bangladesh: An Epidemiological Shift in Terms of Morbidity and Mortality, Can. J. Infect. Dis. Med. Microbiol. 2019 (2019), 3516284. https://doi.org/10.1155/2019/3516284.
  25. W. Sanusi, N. Badwi, A. Zaki, S. Sidjara, N. Sari, M.I. Pratama, S. Side, Analysis and Simulation of SIRS Model for Dengue Fever Transmission in South Sulawesi, Indonesia, J. Appl. Math. 2021 (2021), 2918080. https://doi.org/10.1155/2021/2918080.
  26. H.S. Rodrigues, M.T.T. Monteiro, D.F.M. Torres, Sensitivity Analysis in a Dengue Epidemiological Model, Conf. Papers Math. 2013 (2013), 721406. https://doi.org/10.1155/2013/721406.