Essential Bipolar Fuzzy Ideals in Semigroups

Main Article Content

Thiti Gaketem, Pannawit Khamrot

Abstract

In this paper, we give the concepts of essential bipolar fuzzy ideals in semigroups. We discuss the basic properties and relationships between essential bipolar fuzzy ideals and essential ideals in semigroups Finally, we extend to 0-essential bipolar fuzzy ideals in semigroups.

Article Details

References

  1. S. Baupradist, B. Chemat, K. Palanivel, R. Chinram, Essential Ideals and Essential Fuzzy Ideals in Semigroups, J. Discrete Math. Sci. Cryptography. 24 (2020), 223–233. https://doi.org/10.1080/09720529.2020.1816643.
  2. C.S. Kim, J.G. Kang, J.M. Kang, Ideal Theory of Semigroups Based on the Bipolar Valued Fuzzy Set Theory, Ann. Fuzzy Math. Inform. 2 (2012), 193-206.
  3. T. Gaketem, A. Iampan, Essential UP-Ideals and t-Essential Fuzzy UP-Ideals of UP-Algebras, ICIC Express Lett. 15 (2021), 1283-1289. https://doi.org/10.24507/icicel.15.12.1283.
  4. T. Gaketem, P. Khamrot, A. Iampan, Essential UP-Filters and t-Essential Fuzzy UP-Filters of UP-Algebras, ICIC Express Lett. 16 (2021), 1057-1062. https://doi.org/10.24507/icicel.16.10.1057.
  5. K. Nobuaki, Fuzzy Bi-Ideals in Semigroups, Comment. Math. Univ. St. Paul 5 (1979), 128-132.
  6. K. Lee, Bipolar-Valued Fuzzy Sets and Their Operations, In: Proceeding International Conference on Intelligent Technologies Bangkok, Thailand (2000), 307-312.
  7. U. Medhi, K. Rajkhowa, L.K. Barthakur, H.K. Saikia, On Fuzzy Essential Ideals of Rings, Adv. Fuzzy Sets Syst. 5 (2008), 287-299.
  8. U. Medhi, H.K. Saikia, On T-Fuzzy Essential Ideals of Rings, J. Pure Appl. Math. 89 (2013), 343-353. https://doi.org/10.12732/ijpam.v89i3.5.
  9. J.N. Mordeson, D.S. Malik, N. Kuroki, Fuzzy Semigroup, Springer, Berlin, (2003).
  10. N. Panpetch, T. Muangngao, T. Gaketem, Some Essential Fuzzy Bi-Ideals and Essential Fuzzy Bi-Ideals in a Semigroup, J. Math. Computer Sci. 28 (2023), 326-334. http://dx.doi.org/10.22436/jmcs.028.04.02.
  11. S. Wani, K. Pawar, On Essential Ideals of a Ternary Semiring, Sohag J. Math. 4 (2017), 65-69. https://doi.org/10.18576/sjm/040301.
  12. L.A. Zadeh, Fuzzy Sets, Inform. Control. 8 (1965), 338–353. https://doi.org/10.1016/s0019-9958(65)90241-x.