The Möbius Invariant QTH Spaces

Main Article Content

Munirah Aljuaid

Abstract

In this article, we introduce a new space of harmonic mappings that is an extension of the well known space QT in the unit disk D in term of non decreasing function. Several characterizations of the space QTH are investigated. We also define the little subspace of QTH. Finally, the boundedness of the composition operators Cϕ mapping into the space QTH and QTH,0 are considered.

Article Details

References

  1. M. Aljuaid, The Operator Theory on Some Spaces of Harmonic Mappings, Doctoral Dissertation, George Mason University, 2019.
  2. M. Aljuaid, F. Colonna, Characterizations of Bloch-Type Spaces of Harmonic Mappings, J. Funct. Spaces. 2019 (2019), 5687343. https://doi.org/10.1155/2019/5687343.
  3. F. Colonna, The Bloch Constant of Bounded Harmonic Mappings, Indiana Univ. Math. J. 38 (1989), 829–840. https://www.jstor.org/stable/24895370.
  4. P. Wu, H. Wulan, Composition Operators From the Bloch Space Into the Spaces QT , Int. J. Math. Math. Sci. 2003 (2003), 1973–1979. https://doi.org/10.1155/s0161171203207122.
  5. M. Aljuaid, F. Colonna, Composition Operators on Some Banach Spaces of Harmonic Mappings, J. Funct. Spaces. 2020 (2020), 9034387. https://doi.org/10.1155/2020/9034387.
  6. M. Aljuaid, F. Colonna, On the Harmonic Zygmund Spaces, Bull. Aust. Math. Soc. 101 (2020), 466–476. https://doi.org/10.1017/s0004972720000180.
  7. C. Boyd, P. Rueda, Isometries of Weighted Spaces of Harmonic Functions, Potential Anal. 29 (2008), 37–48. https://doi.org/10.1007/s11118-008-9086-4.
  8. S. Chen, S. Ponnusamy, A. Rasila, Lengths, Areas and Lipschitz-Type Spaces of Planar Harmonic Mappings, Nonlinear Anal.: Theory Methods Appl. 115 (2015), 62–70. https://doi.org/10.1016/j.na.2014.12.005.
  9. Sh. Chen, S. Ponnusamy, X. Wang, Landau’s Theorem and Marden Constant for Harmonic ν-Bloch Mappings, Bull. Aust. Math. Soc. 84 (2011), 19–32. https://doi.org/10.1017/s0004972711002140.
  10. Sh. Chen, S. Ponnusamy, X. Wang, On Planar Harmonic Lipschitz and Planar Harmonic Hardy Classes, Ann. Acad. Sci. Fen. Math. 36 (2011), 567–576.
  11. Sh. Chen, X. Wang, on Harmonic Bloch Spaces in the Unit Ball Of C n , Bull. Aust. Math. Soc. 84 (2011), 67–78. https://doi.org/10.1017/s0004972711002164.
  12. X. Fu, X. Liu, On Characterizations of Bloch Spaces and Besov Spaces of Pluriharmonic Mappings, J. Inequal. Appl. 2015 (2015), 360. https://doi.org/10.1186/s13660-015-0884-0.
  13. J. Laitila, H.O. Tylli, Composition Operators on Vector-Valued Harmonic Functions and Cauchy Transforms, Indiana Univ. Math. J. 55 (2006), 719–746. https://www.jstor.org/stable/24902369.
  14. W. Lusky, On Weighted Spaces of Harmonic and Holomorphic Functions, J. Lond. Math. Soc. 51 (1995), 309–320. https://doi.org/10.1112/jlms/51.2.309.
  15. W. Lusky, On the Isomorphism Classes of Weighted Spaces of Harmonic and Holomorphic Functions, Stud. Math. 175 (2006), 19–45.
  16. A.L. Shields, D.L. Williams, Bounded Projections, Duality, and Multipliers in Spaces of Harmonic Functions, J. Reine Angew. Math. 299-300 (1978), 256–279. https://doi.org/10.1515/crll.1978.299-300.256.
  17. R. Yoneda, A Characterization of the Harmonic Bloch Space and the Harmonic Besov Spaces by an Oscillation, Proc. Edinburgh Math. Soc. 45 (2002), 229–239. https://doi.org/10.1017/s001309159900142x.
  18. M. Aljuaid, F. Colonna, Norm and Essential Norm of Composition Operators Mapping Into Weighted Banach Spaces of Harmonic Mappings, Preprint.
  19. H. Wulan, P. Wu, Characterizations of QT Spaces, J. Math. Anal. Appl. 254 (2001), 484–497.
  20. A. Kamal, Q-Type Spaces of Harmonic Mappings, J. Math. 2022 (2022), 1342051. https://doi.org/10.1155/2022/1342051.
  21. M. Aljuaid, M.A. Bakhit, On Characterizations of Weighted Harmonic Bloch Mappings and Its Carleson Measure Criteria, J. Funct. Spaces. 2023 (2023), 8500633. https://doi.org/10.1155/2023/8500633.