Random and Fixed Effects Selection for Weighted Ridge

Main Article Content

Lulah Alnaji

Abstract

Using penalized profiled log-likelihood and penalized limited profiled log-likelihood, respectively, together with the weighted ridge penalized term, we offer a method in this study for choosing the fixed and random effects in linear mixed models. Then, we use the penalized restricted profiled log-likelihood to perform in the random effects depending on the chosen tuning parameter. Second, we use the penalized profiled log-likelihood to choose the fixed effect parameters. There is no closed-form solution for the choice of the fixed and random effects, hence the Newton-Raphson technique is employed to iteratively estimate the parameters. We use a simulation study to show how well the suggested strategy works. Lastly, we use two separate datasets to use the methods to further evaluate the newly proposed model.

Article Details

References

  1. G. Verbeke, Linear Mixed Models for Longitudinal Data, in: Linear Mixed Models in Practice, Springer, New York, NY, 1997: pp. 63-153. https://doi.org/10.1007/978-1-4612-2294-1_3.
  2. A.E. Hoerl, R.W. Kennard, Ridge Regression: Biased Estimation for Nonorthogonal Problems, Technometrics. 12 (1970), 55-67.
  3. R. Tibshirani, Regression Shrinkage and Selection via the Lasso, J. R. Stat. Soc.: Ser. B (Methodol.) 58 (1996), 267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x.
  4. H. Zou, The Adaptive Lasso and Its Oracle Properties, J. Amer. Stat. Assoc. 101 (2006), 1418–1429. https://doi.org/10.1198/016214506000000735.
  5. H. Zou, T. Hastie, Regularization and Variable Selection via the Elastic Net, J. R. Stat. Soc. Ser. B: Stat. Methodol. 67 (2005), 301-320. https://doi.org/10.1111/j.1467-9868.2005.00503.x.
  6. J. Fan, R. Li, Variable Selection via Nonconcave Penalized Likelihood and Its Oracle Properties, J. Amer. Stat. Assoc. 96 (2001), 1348–1360. https://doi.org/10.1198/016214501753382273.
  7. H. Akaike, A New Look at the Statistical Model Identification, IEEE Trans. Automat. Contr. 19 (1974), 716-723. https://doi.org/10.1109/tac.1974.1100705.
  8. G. Schwarz, Estimating the Dimension of a Model, Ann. Stat. 6 (1978), 461-464. https://www.jstor.org/stable/2958889.
  9. Y. Yang, Can the Strengths of AIC and BIC Be Shared? A Conflict Between Model Indentification and Regression Estimation, Biometrika. 92 (2005), 937-950. https://doi.org/10.1093/biomet/92.4.937.
  10. E. Adjakossa, G. Nuel, Fixed Effects Selection in the Linear Mixed-Effects Model Using Adaptive Ridge Procedure for L0 Penalty Performance, arXiv:1705.01308. (2017). https://doi.org/10.48550/ARXIV.1705.01308.
  11. H. Peng, Y. Lu, Model Selection in Linear Mixed Effect Models, J. Multivar. Anal. 109 (2012), 109-129. https://doi.org/10.1016/j.jmva.2012.02.005.
  12. B. Lin, Z. Pang, J. Jiang, Fixed and Random Effects Selection by REML and Pathwise Coordinate Optimization, J. Comput. Graph. Stat. 22 (2013), 341–355. https://doi.org/10.1080/10618600.2012.681219.
  13. J. Pan, J. Shang, Adaptive LASSO for Linear Mixed Model Selection via Profile Log-Likelihood, Commun. Stat. - Theory Methods. 47 (2017), 1882-1900. https://doi.org/10.1080/03610926.2017.1332219.
  14. F. Frommlet, G. Nuel, An Adaptive Ridge Procedure for L0 Regularization, PLoS ONE. 11 (2016), e0148620. https://doi.org/10.1371/journal.pone.0148620.
  15. N.M. Laird, J.H. Ware, Random-Effects Models for Longitudinal Data, Biometrics. 38 (1982), 963. https://doi.org/10.2307/2529876.
  16. R.I. Jennrich, M.D. Schluchter, Unbalanced Repeated-Measures Models with Structured Covariance Matrices, Biometrics. 42 (1986), 805-820. https://doi.org/10.2307/2530695.
  17. M.J. Lindstrom, D.M. Bates, Newton-Raphson and EM Algorithms for Linear Mixed-Effects Models for RepeatedMeasures Data, J. Amer. Stat. Assoc. 83 (1988), 1014–1022. https://doi.org/10.1080/01621459.1988.10478693.
  18. D.A. Harville, Maximum Likelihood Approaches to Variance Component Estimation and to Related Problems, J. Amer. Stat. Assoc. 72 (1977), 320-338.
  19. Y. Grandvalet, Least Absolute Shrinkage is Equivalent to Quadratic Penalization, in: L. Niklasson, M. Boden, T. Ziemke (Eds.), ICANN 98, Springer London, London, 1998: pp. 201-206. https://doi.org/10.1007/978-1-4471-1599-1_27.
  20. P. Bühlmann, L. Meier, H. Zou, Discussion of "One-Step Sparse Estimates in Nonconcave Penalized Likelihood Models" by H. Zou and R. Li, Ann. Stat. 36 (2008), 1534-1541.
  21. R.C.A. Rippe, J.J. Meulman, P.H.C. Eilers, Visualization of Genomic Changes by Segmented Smoothing Using an L0 Penalty, PLoS ONE. 7 (2012), e38230. https://doi.org/10.1371/journal.pone.0038230.
  22. E.J. Candes, M.B. Wakin, S.P. Boyd, Enhancing Sparsity by Reweighted `1 Minimization, J. Fourier Anal. Appl. 14 (2008), 877-905. https://doi.org/10.1007/s00041-008-9045-x.
  23. M. Stone, An Asymptotic Equivalence of Choice of Model by Cross-Validation and Akaike’s Criterion, J. R. Stat. Soc.: Ser. B (Methodol.) 39 (1977), 44-47. https://doi.org/10.1111/j.2517-6161.1977.tb01603.x.
  24. H.D. Bondell, A. Krishna, S.K. Ghosh, Joint Variable Selection for Fixed and Random Effects in Linear Mixed-Effects Models, Biometrics. 66 (2010), 1069-1077. https://doi.org/10.1111/j.1541-0420.2010.01391.x.
  25. J.W.R. Twisk, H.C.G. Kemper, G.J. Mellenbergh, Longitudinal Development of Lipoprotein Levels in Males and Females Aged 12-28 Years: The Amsterdam Growth and Health Study, Int. J. Epidemiol. 24 (1995), 69-77. https://doi.org/10.1093/ije/24.1.69.
  26. M. Ahn, H.H. Zhang, W. Lu, Moment-Based Method for Random Effects Selection in Linear Mixed Models, Stat. Sinica. 22 (2012), 1539-1562. https://doi.org/10.5705/ss.2011.054.
  27. R.F. Potthoff, S.N. Roy, A Generalized Multivariate Analysis of Variance Model Useful Especially for Growth Curve Problems, Biometrika. 51 (1964), 313-326. https://doi.org/10.1093/biomet/51.3-4.313.