Random and Fixed Effects Selection for Weighted Ridge
Main Article Content
Abstract
Using penalized profiled log-likelihood and penalized limited profiled log-likelihood, respectively, together with the weighted ridge penalized term, we offer a method in this study for choosing the fixed and random effects in linear mixed models. Then, we use the penalized restricted profiled log-likelihood to perform in the random effects depending on the chosen tuning parameter. Second, we use the penalized profiled log-likelihood to choose the fixed effect parameters. There is no closed-form solution for the choice of the fixed and random effects, hence the Newton-Raphson technique is employed to iteratively estimate the parameters. We use a simulation study to show how well the suggested strategy works. Lastly, we use two separate datasets to use the methods to further evaluate the newly proposed model.
Article Details
References
- G. Verbeke, Linear Mixed Models for Longitudinal Data, in: Linear Mixed Models in Practice, Springer, New York, NY, 1997: pp. 63-153. https://doi.org/10.1007/978-1-4612-2294-1_3.
- A.E. Hoerl, R.W. Kennard, Ridge Regression: Biased Estimation for Nonorthogonal Problems, Technometrics. 12 (1970), 55-67.
- R. Tibshirani, Regression Shrinkage and Selection via the Lasso, J. R. Stat. Soc.: Ser. B (Methodol.) 58 (1996), 267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x.
- H. Zou, The Adaptive Lasso and Its Oracle Properties, J. Amer. Stat. Assoc. 101 (2006), 1418–1429. https://doi.org/10.1198/016214506000000735.
- H. Zou, T. Hastie, Regularization and Variable Selection via the Elastic Net, J. R. Stat. Soc. Ser. B: Stat. Methodol. 67 (2005), 301-320. https://doi.org/10.1111/j.1467-9868.2005.00503.x.
- J. Fan, R. Li, Variable Selection via Nonconcave Penalized Likelihood and Its Oracle Properties, J. Amer. Stat. Assoc. 96 (2001), 1348–1360. https://doi.org/10.1198/016214501753382273.
- H. Akaike, A New Look at the Statistical Model Identification, IEEE Trans. Automat. Contr. 19 (1974), 716-723. https://doi.org/10.1109/tac.1974.1100705.
- G. Schwarz, Estimating the Dimension of a Model, Ann. Stat. 6 (1978), 461-464. https://www.jstor.org/stable/2958889.
- Y. Yang, Can the Strengths of AIC and BIC Be Shared? A Conflict Between Model Indentification and Regression Estimation, Biometrika. 92 (2005), 937-950. https://doi.org/10.1093/biomet/92.4.937.
- E. Adjakossa, G. Nuel, Fixed Effects Selection in the Linear Mixed-Effects Model Using Adaptive Ridge Procedure for L0 Penalty Performance, arXiv:1705.01308. (2017). https://doi.org/10.48550/ARXIV.1705.01308.
- H. Peng, Y. Lu, Model Selection in Linear Mixed Effect Models, J. Multivar. Anal. 109 (2012), 109-129. https://doi.org/10.1016/j.jmva.2012.02.005.
- B. Lin, Z. Pang, J. Jiang, Fixed and Random Effects Selection by REML and Pathwise Coordinate Optimization, J. Comput. Graph. Stat. 22 (2013), 341–355. https://doi.org/10.1080/10618600.2012.681219.
- J. Pan, J. Shang, Adaptive LASSO for Linear Mixed Model Selection via Profile Log-Likelihood, Commun. Stat. - Theory Methods. 47 (2017), 1882-1900. https://doi.org/10.1080/03610926.2017.1332219.
- F. Frommlet, G. Nuel, An Adaptive Ridge Procedure for L0 Regularization, PLoS ONE. 11 (2016), e0148620. https://doi.org/10.1371/journal.pone.0148620.
- N.M. Laird, J.H. Ware, Random-Effects Models for Longitudinal Data, Biometrics. 38 (1982), 963. https://doi.org/10.2307/2529876.
- R.I. Jennrich, M.D. Schluchter, Unbalanced Repeated-Measures Models with Structured Covariance Matrices, Biometrics. 42 (1986), 805-820. https://doi.org/10.2307/2530695.
- M.J. Lindstrom, D.M. Bates, Newton-Raphson and EM Algorithms for Linear Mixed-Effects Models for RepeatedMeasures Data, J. Amer. Stat. Assoc. 83 (1988), 1014–1022. https://doi.org/10.1080/01621459.1988.10478693.
- D.A. Harville, Maximum Likelihood Approaches to Variance Component Estimation and to Related Problems, J. Amer. Stat. Assoc. 72 (1977), 320-338.
- Y. Grandvalet, Least Absolute Shrinkage is Equivalent to Quadratic Penalization, in: L. Niklasson, M. Boden, T. Ziemke (Eds.), ICANN 98, Springer London, London, 1998: pp. 201-206. https://doi.org/10.1007/978-1-4471-1599-1_27.
- P. Bühlmann, L. Meier, H. Zou, Discussion of "One-Step Sparse Estimates in Nonconcave Penalized Likelihood Models" by H. Zou and R. Li, Ann. Stat. 36 (2008), 1534-1541.
- R.C.A. Rippe, J.J. Meulman, P.H.C. Eilers, Visualization of Genomic Changes by Segmented Smoothing Using an L0 Penalty, PLoS ONE. 7 (2012), e38230. https://doi.org/10.1371/journal.pone.0038230.
- E.J. Candes, M.B. Wakin, S.P. Boyd, Enhancing Sparsity by Reweighted `1 Minimization, J. Fourier Anal. Appl. 14 (2008), 877-905. https://doi.org/10.1007/s00041-008-9045-x.
- M. Stone, An Asymptotic Equivalence of Choice of Model by Cross-Validation and Akaike’s Criterion, J. R. Stat. Soc.: Ser. B (Methodol.) 39 (1977), 44-47. https://doi.org/10.1111/j.2517-6161.1977.tb01603.x.
- H.D. Bondell, A. Krishna, S.K. Ghosh, Joint Variable Selection for Fixed and Random Effects in Linear Mixed-Effects Models, Biometrics. 66 (2010), 1069-1077. https://doi.org/10.1111/j.1541-0420.2010.01391.x.
- J.W.R. Twisk, H.C.G. Kemper, G.J. Mellenbergh, Longitudinal Development of Lipoprotein Levels in Males and Females Aged 12-28 Years: The Amsterdam Growth and Health Study, Int. J. Epidemiol. 24 (1995), 69-77. https://doi.org/10.1093/ije/24.1.69.
- M. Ahn, H.H. Zhang, W. Lu, Moment-Based Method for Random Effects Selection in Linear Mixed Models, Stat. Sinica. 22 (2012), 1539-1562. https://doi.org/10.5705/ss.2011.054.
- R.F. Potthoff, S.N. Roy, A Generalized Multivariate Analysis of Variance Model Useful Especially for Growth Curve Problems, Biometrika. 51 (1964), 313-326. https://doi.org/10.1093/biomet/51.3-4.313.