On (Fuzzy) Weakly Almost Interior Γ-Hyperideals in Ordered Γ-Semihypergroups

Main Article Content

Warud Nakkhasen, Ronnason Chinram, Aiyared Iampan

Abstract

In this paper, we concentrate on studying the generalization of almost interior Γ-hyperideals in ordered Γ-semihypergroups. The notion of weakly almost interior Γ-hyperideals of ordered Γ-semihypergroups is introduced. This concept generalizes the notion of almost interior Γ-hyperideals in ordered Γ-semihypergroups. Then, the characterization of ordered Γ-semihypergroups having no proper weakly almost interior Γ-hyperideals is provided. Next, we introduce the concept of fuzzy weakly almost interior Γ-hyperideals of ordered Γ-semihypergroups. Also, some properties of fuzzy weakly almost interior Γ-hyperideals are considered. Moreover, the concepts of weakly almost interior Γ-hyperideals and fuzzy weakly almost interior Γ-hyperideals of ordered Γ-semihypergroups are characterized. The connections between strongly prime (resp., prime, semiprime) weakly almost interior Γ-hyperideals and fuzzy strongly prime (resp., prime, semiprime) weakly almost interior Γ-hyperideals in ordered Γ-semihypergroups are presented.

Article Details

References

  1. S.M. Anvariyeh, S. Mirvakili, B. Davvaz, On Γ-Hyperideals in Γ-Semihypergroups, Carpathian J. Math. 26 (2010), 11-23. https://www.jstor.org/stable/43999427.
  2. S. Bogdanović, Semigroups in Which Some Bi-Ideal Is a Group, Rev. Res. Fac. Sci. - Univ. Novi Sad, 11 (1981), 261-266.
  3. R. Chinram, W. Nakkhasen, Almost Bi-Quasi-Interior Ideals and Fuzzy Almost Bi-Quasi-Interior Ideals of Semigroups, J. Math. Computer Sci. 26 (2021), 128-136. https://doi.org/10.22436/jmcs.026.02.03.
  4. P. Corsini, Prolegomena of Hypergroup Theory, Aviani Editore Publisher, Tricesimo, Italy, 1993.
  5. O. Grošek, L. Satko, A New Notion in the Theory of Semigroup, Semigroup Forum, 20 (1980), 233-240. https://doi.org/10.1007/BF02572683.
  6. D. Heidari, B. Davvaz, On Ordered Hyperstructures, UPB Sci. Bull. Ser. A: Appl. Math. Phys. 73 (2011), 85-96.
  7. W. Jantanan, A. Simuen, W. Yonthanthum, R. Chinram, Almost Interior Gamma-Ideals and Fuzzy Almost Interior Gamma-Ideals in Gamma-Semigroups, Math. Stat. 9 (2021), 302-308. https://doi.org/10.13189/ms.2021.090311.
  8. N. Kaopusek, T. Kaewnoi, R. Chinram, On Almost Interior Ideals and Weakly Almost Interior Ideals of Semigroups, J. Discrete Math. Sci. Cryptography. 23 (2020), 773-778. https://doi.org/10.1080/09720529.2019.1696917.
  9. W. Krailoet, A. Simuen, R. Chinram, P. Petchkaew, A Note on Fuzzy Almost Interior Ideals in Semigroups, Int. J. Math. Computer Sci. 16 (2021), 803-808.
  10. F. Marty, Sur une Generalization de la Notion de Group, In: 8th Congres des Mathematiciens Scandinaves, Stockholm, 45-49, 1934.
  11. P. Muangdoo, T. Chuta, W. Nakkhasen, Almost Bi-Hyperideals and Their Fuzzification of Semihypergroups, J. Math. Comput. Sci. 11 (2021), 2755-2767. https://doi.org/10.28919/jmcs/5609.
  12. W. Nakkhasen, P. Khathipphathi, S. Panmuang, A Note on Fuzzy Almost Interior Hyperideals of Semihypergroups, Int. J. Math. Computer Sci. 17 (2022), 1419-1426.
  13. P. Pao-Ming, L. Ying-Ming, Fuzzy Topology. I. Neighborhood Structure of a Fuzzy Point and Moore-Smith Convergence, J. Math. Anal. Appl. 76 (1980), 571-599. https://doi.org/10.1016/0022-247x(80)90048-7.
  14. Y. Rao, S. Kosari, Z. Shao, M. Akhoundi, S. Omidi, A Study on A-I-Γ-Hyperideals and (m, n)-Γ-Hyperfilters in Ordered Γ-Semihypergroups, Discr. Dyn. Nat. Soc. 2021 (2021), 6683910. https://doi.org/10.1155/2021/6683910.
  15. M.K. Sen, N.K. Saha, On Γ-Semigroup-I, Bull. Calcutta Math. Soc. 78 (1986), 180-186.
  16. A. Simuen, K. Wattanatripop, R. Chinram, Characterizing Almost Quasi-Γ-Ideals and Fuzzy Almost Quasi-Γ-Ideals of Γ-Semigroups, Commun. Math. Appl. 11 (2020), 233-240.
  17. S. Suebsung, R. Chinram, W. Yonthanthum, K. Hila, A. Iampan, On Almost Bi-Ideals and Almost Quasi-Ideals of Ordered Semigroups and Their Fuzzifications, ICIC Express Lett. 16 (2022), 127-135.
  18. S. Suebsung, T. Kaewnoi, R. Chinram, A Note on Almost Hyperideals in Semihypergroups, Int. J. Math. Computer Sci. 15 (2020), 127-133.
  19. S. Suebsung, W. Yonthanthum, K. Hila, R. Chinram, On Almost Quasi-Hyperideals in Semihypergroups, J. Discr. Math. Sci. Cryptography. 24 (2021), 235-244. https://doi.org/10.1080/09720529.2020.1826167.
  20. J. Tang, B. Davvaz, X. Xie, A Study on (Fuzzy) Quasi-Γ-Hyperideals in Ordered Γ-Semihypergroups, J. Intell. Fuzzy Syst. 32 (2017), 3821-3838. https://doi.org/10.3233/ifs-162117.
  21. K. Wattanatripop, R. Chinram, T. Changphas, Fuzzy Almost Bi-Ideals in Semigroups, Int. J. Math. Computer Sci. 13 (2018), 51-58.
  22. L.A. Zadeh, Fuzzy Sets, Inform. Control. 8 (1965), 338-353. https://doi.org/10.1016/s0019-9958(65)90241-x.