Periodic Trajectories for HIV Dynamics in a Seasonal Environment With a General Incidence Rate
Main Article Content
Abstract
In this paper, we propose a five-dimensional nonlinear system of differential equations for the human immunodeficiency virus (HIV) including the B-cell functions with a general nonlinear incidence rate. The compartment of infected cells was subdivided into three classes representing the latently infected cells, the short-lived productively infected cells, and the long-lived productively infected cells. The basic reproduction number was established, and the local and global stability of the equilibria of the model were studied. A sensitivity analysis with respect to the model parameters was undertaken. Finally, some numerical simulations are presented to illustrate the theoretical findings.
Article Details
References
- D.C. Douek, M. Roederer, R.A. Koup, Emerging Concepts in the Immunopathogenesis Of AIDS, Annu. Rev. Med. 60 (2009), 471–484. https://doi.org/10.1146/annurev.med.60.041807.123549.
- D. Bernoulli, Essay d’une Nouvelle Analyse de la Mortalité Causée par la Petite Vérole et des Avantages de l’Inoculation pour la Prévenir, Mem. Math. Phys. Acad. R. Sci. Paris, (1766), 1–45.
- Y. Nakata, T. Kuniya, Global Dynamics of a Class of SEIRS Epidemic Models in a Periodic Environment, J. Math. Anal. Appl. 363 (2010), 230–237. https://doi.org/10.1016/j.jmaa.2009.08.027.
- N. Bacaër, R. Ouifki, Growth Rate and Basic Reproduction Number for Population Models With a Simple Periodic Factor, Math. Biosci. 210 (2007), 647–658. https://doi.org/10.1016/j.mbs.2007.07.005.
- N. Bacaër, Approximation of the Basic Reproduction Number R0 for Vector-Borne Diseases With a Periodic Vector Population, Bull. Math. Biol. 69 (2007), 1067–1091. https://doi.org/10.1007/s11538-006-9166-9.
- N. Bacaër, S. Guernaoui, The Epidemic Threshold of Vector-Borne Diseases With Seasonality, J. Math. Biol. 53 (2006), 421–436. https://doi.org/10.1007/s00285-006-0015-0.
- M.E. Hajji, A.H. Albargi, A Mathematical Investigation of an "SVEIR" Epidemic Model for the Measles Transmission, Math. Biosci. Eng. 19 (2022), 2853–2875. https://doi.org/10.3934/mbe.2022131.
- M.E. Hajji, Modelling and Optimal Control for Chikungunya Disease, Theory Biosci. 140 (2020), 27–44. https://doi.org/10.1007/s12064-020-00324-4.
- A.A. Alsolami, M.E. Hajji, Mathematical Analysis of a Bacterial Competition in a Continuous Reactor in the Presence of a Virus, Mathematics. 11 (2023), 883. https://doi.org/10.3390/math11040883.
- A.M. Elaiw, S.F. Alshehaiween, A.D. Hobiny, Global Properties of HIV Dynamics Models Including Impairment of B-Cell Functions, J. Biol. Syst. 28 (2020), 1–25. https://doi.org/10.1142/s0218339020500011.
- S. Alsahafi, S. Woodcock, Exploring HIV Dynamics and an Optimal Control Strategy, Mathematics. 10 (2022), 749. https://doi.org/10.3390/math10050749.
- M.E. Hajji, A. Zaghdani, S. Sayari, Mathematical Analysis and Optimal Control for Chikungunya Virus With Two Routes of Infection With Nonlinear Incidence Rate, Int. J. Biomath. 15 (2021), 2150088. https://doi.org/10.1142/s1793524521500881.
- M. El Hajji, S. Sayari, A. Zaghdani, Mathematical Analysis of an "SIR" Epidemic Model in a Continuous Reactor - Deterministic and Probabilistic Approaches, J. Korean Math. Soc. 58 (2021), 45–67. https://doi.org/10.4134/JKMS.J190788.
- D. Xiao, Dynamics and Bifurcations on a Class of Population Model With Seasonal Constant-Yield Harvesting, Discr. Contin. Dyn. Syst. - Series B. 21 (2015), 699–719. https://doi.org/10.3934/dcdsb.2016.21.699.
- N. Bacaër, M. Gomes, On the Final Size of Epidemics With Seasonality, Bull. Math. Biol. 71 (2009), 1954–1966. https://doi.org/10.1007/s11538-009-9433-7.
- F. Kermack, D. McKendrick, A Contribution to the Mathematical Theory of Epidemics, Proc. R. Soc. Lond. A. 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118.
- J. Ma, Z. Ma, Epidemic Threshold Conditions for Seasonally Forced SEIR Models, Math. Biosci. Eng. 3 (2006), 161–172.
- S. Guerrero-Flores, O. Osuna, C. Vargas-de-Leon, Periodic Solutions for Seasonal SIQRS Models With Nonlinear Infection Terms, Electron. J. Diff. Equ. 2019 (2019), 92.
- T. Zhang, Z. Teng, On a Nonautonomous SEIRS Model in Epidemiology, Bull. Math. Biol. 69 (2007), 2537–2559. https://doi.org/10.1007/s11538-007-9231-z.
- W. Wang, X.Q. Zhao, Threshold Dynamics for Compartmental Epidemic Models in Periodic Environments, J. Dyn. Diff. Equ. 20 (2008), 699–717. https://doi.org/10.1007/s10884-008-9111-8.
- M.E. Hajji, D.M. Alshaikh, N.A. Almuallem, Periodic Behaviour of an Epidemic in a Seasonal Environment with Vaccination, Mathematics. 11 (2023), 2350. https://doi.org/10.3390/math11102350.
- O. Diekmann, J. Heesterbeek, On the Definition and the Computation of the Basic Reproduction Ratio R0 in Models for Infectious Diseases in Heterogeneous Populations, J. Math. Biol. 28 (1990), 365–382. https://doi.org/10.1007/BF00178324.
- P. van den Driessche, J. Watmough, Reproduction Numbers and Sub-Threshold Endemic Equilibria for Compartmental Models of Disease Transmission, Math. Biosci. 180 (2002), 29–48. https://doi.org/10.1016/s0025-5564(02)00108-6.
- A. Hurwitz, Ueber die Bedingungen, unter Welchen eine Gleichung nur Wurzeln mit Negativen Reellen Theilen Besitzt, Math. Ann. 46 (1895), 273–284. https://doi.org/10.1007/bf01446812.
- E.J. Routh, A Treatise on the Stability of a Given State of Motion: Particularly Steady Motion, Macmillan, London, (1877).
- J.P. LaSalle, The Stability of Dynamical Systems, SIAM, Philadelphia, (1976).
- M.E. Hajji, How Can Inter-Specific Interferences Explain Coexistence or Confirm the Competitive Exclusion Principle in a Chemostat?, Int. J. Biomath. 11 (2018), 1850111. https://doi.org/10.1142/s1793524518501115.
- M.E. Hajji, N. Chorfi, M. Jleli, Mathematical Model for a Membrane Bioreactor Process, Electron. J. Diff. Eqn. 2015 (2015), 315.
- M.E. Hajji, N. Chorfi, M. Jleli, Mathematical Modelling and Analysis for a Three-Tiered Microbial Food Web in a Chemostat, Electron. J. Diff. Eqn. 2017 (2017), 255.
- F. Zhang, X.Q. Zhao, A Periodic Epidemic Model in a Patchy Environment, J. Math. Anal. Appl. 325 (2007), 496–516. https://doi.org/10.1016/j.jmaa.2006.01.085.
- X. Zhao, Dynamical Systems in Population Biology, Springer-Verlag, New York, (2003).