Characterizing (∈, ∈∨q)-Anti-Intuitionistic Fuzzy Soft UP (BCC)-Subalgebras of UP (BCC)-Algebras
Main Article Content
Abstract
In this paper, the concepts of (∈, ∈∨q)-anti-intuitionistic fuzzy soft UP (BCC)-subalgebras and (∈, ∈)-anti-intuitionistic fuzzy soft UP (BCC)-subalgebras of UP (BCC)-algebras are introduced and studied. The UP (BCC)-homomorphic image and inverse image are investigated in (∈, ∈∨q)-anti-intuitionistic fuzzy soft UP (BCC)-subalgebras of UP (BCC)-algebras. Characterizations of (∈, ∈∨q)-anti-intuitionistic fuzzy soft UP (BCC)-subalgebras of UP (BCC)-algebras are discussed.
Article Details
References
- B. Ahmad, A. Kharal, On Fuzzy Soft Sets, Adv. Fuzzy Syst. 2009 (2009), 586507. https://doi.org/10.1155/2009/586507.
- M. Atef, M.I. Ali, T.M. Al-shami, Fuzzy Soft Covering-Based Multi-Granulation Fuzzy Rough Sets and Their Applications, Comput. Appl. Math. 40 (2021), 115. https://doi.org/10.1007/s40314-021-01501-x.
- S.R. Barbhuiya, (∈, ∈ ∨q)-Fuzzy Prime Ideals of Bck-Algebras, Inf. Sci. Lett. 5 (2016), 21–27. https://doi.org/10.18576/isl/050103.
- S. R. Barbhuiya and K. D. Choudhury, (∈, ∈ ∨q)-Interval-Valued Fuzzy Dot d-Ideals of d-Algebras, Adv. Trends Math. 3 (2015), 1–15. https://doi.org/10.18052/www.scipress.com/atmath.3.1.
- S.K. Bhakat, P. DaS, (∈, ∈ ∨q)-Fuzzy Subgroup, Fuzzy Sets Syst. 80 (1996), 359–368. https://doi.org/10.1016/0165-0114(95)00157-3.
- N. Caˇgman, S. Enginoˇglu, F. Citak, Fuzzy Soft Set Theory and Its Application, Iran. J. Fuzzy Syst. 8 (2011), 137–147.
- B. Davvaz, M. Mozafar, (∈, ∈ ∨q)-Fuzzy Lie Subalgebra and Ideals, Int. J. Fuzzy Syst. 11 (2009), 123–129.
- T. Guntasow, S. Sajak, A. Jomkham, A. Iampan, Fuzzy Translations of a Fuzzy Set in UP-Algebras, J. Indones. Math. Soc. 23 (2017), 1–19. https://doi.org/10.22342/jims.23.2.371.1-19.
- W. Guo, L. Chen, (∈, ∈ ∨q)-Fuzzy Lie Subalgebra and Ideals, Int. J. Fuzzy Syst. 18 (2015), 108–109. https://doi.org/10.1007/s40815-015-0101-9.
- Y. Huang, BCI-Algebra, Science Press, Beijing, China, 2006.
- A. Iampan, A New Branch of the Logical Algebra: UP-Algebras, J. Algebra Related Topics. 5 (2017), 35–54. https://doi.org/10.22124/jart.2017.2403.
- C. Jana, M. Pal, On (∈α, ∈α ∨qβ)-Fuzzy Soft BCI-Algebras, Missouri J. Math. Sci. 29 (2017), 197–215. https://doi.org/10.35834/mjms/1513306831.
- C. Jana, M. Pal, A.B. Saied, (∈, ∈ ∨q)-Bipolar Fuzzy BCK/BCI-Algebras, Missouri J. Math. Sci. 29 (2017), 139–160. https://doi.org/10.35834/mjms/1513306827.
- Y.B. Jun, Generalizations of (∈, ∈ ∨q)-Fuzzy Subalgebras in BCK/BCI-Algebras, Comput. Math. Appl. 58 (2009), 1383–1390. https://doi.org/10.1016/j.camwa.2009.07.043.
- Y.B. Jun, B. Brundha, N. Rajesh, R. Bandaru, (3, 2)-Fuzzy UP (BCC)-Subalgebras and (3, 2)-Fuzzy UP (BCC)- Filters, J. Mahani Math. Res.11 (2022), 1-14. https://doi.org/10.22103/jmmrc.2022.18786.1191.
- Y. Komori, The Class of BCC-Algebras Is Not a Variety, Math. Japon. 29 (1984), 391–394. https://cir.nii.ac.jp/crid/1573668924920916224.
- X. Ma, J. Zhan, On (∈, ∈ ∨q)-Fuzzy Filters of BL-Algebras, J. Syst. Sci. Complex. 21 (2008), 144–158. https://doi.org/10.1007/s11424-008-9073-2.
- P.K. Maji, A.R. Roy, R. Biswas, Fuzzy Soft Sets, J. Fuzzy Math. 9 (2001), 589–602.
- P.K. Maji, R. Biswas, A.R. Roy, Intuitionistic Fuzzy Soft Sets, J. Fuzzy Math. 9 (2001), 677–692.
- D. Molodtsov, Soft Set Theory–First Results, Comput. Math. Appl. 37 (1999), 19–31. https://doi.org/10.1016/s0898-1221(99)00056-5.
- J. Somjanta, N. Thuekaew, P. Kumpeangkeaw, A. Iampan, Fuzzy Sets in UP-Algebras, Ann. Fuzzy Math. Inf. 12 (2016), 739–756.
- L.A. Zadeh, Fuzzy Sets, Inf. Control. 8 (1965), 338–353. https://doi.org/10.1016/s0019-9958(65)90241-x.
- J. Zhan, Y.B. Jun, B. Davvaz, On (∈, ∈ ∨q)-Fuzzy Ideals of BCI-Algebras, Iran. J. Fuzzy Syst. 6 (2009), 81–94.