Characterizations of Almost (τ1, τ2)-Continuous Functions

Main Article Content

Chawalit Boonpok, Prapart Pue-on

Abstract

This paper is concerned with the concept of almost (τ1, τ2)-continuous functions. Moreover, some characterizations of almost (τ1, τ2)-continuous functions are investigated.

Article Details

References

  1. M.E. Abd El-Monsef, S.N. El-Deeb, R.A. Mahmoud, β-Open Sets and β-Continuous Mappings, Bull. Fac. Sci. Assiut Univ. 12 (1983), 77–90.
  2. D. Andrijevic, On b-Open Sets, Mat. Vesnik, 48 (1996), 59–64.
  3. C. Boonpok, C. Viriyapong, On Some Forms of Closed Sets and Related Topics, Eur. J. Pure Appl. Math. 16 (2023), 336–362. https://doi.org/10.29020/nybg.ejpam.v16i1.4582.
  4. C. Boonpok, C. Viriyapong, On (Λ, p)-Closed Sets and the Related Notions in Topological Spaces, Eur. J. Pure Appl. Math. 15 (2022), 415–436. https://doi.org/10.29020/nybg.ejpam.v15i2.4274.
  5. C. Boonpok and C. Viriyapong, Upper and Lower Almost Weak (τ1, τ2)-Continuity, Eur. J. Pure Appl. Math. 14 (2021), 1212–1225. https://doi.org/10.29020/nybg.ejpam.v14i4.4072.
  6. C. Boonpok, (τ1, τ2)δ-Semicontinuous Multifunctions, Heliyon. 6 (2020), e05367. https://doi.org/10.1016/j.heliyon.2020.e05367.
  7. C. Boonpok, C. Viriyapong, M. Thongmoon, On Upper and Lower (τ1, τ2)-Precontinuous Multifunctions, J. Math. Computer Sci. 18 (2018), 282–293. https://doi.org/10.22436/jmcs.018.03.04.
  8. C. Boonpok, M-Continuous Functions in Biminimal Structure Spaces, Far East J. Math. Sci. 43 (2010), 41–58.
  9. T. Duangphui, C. Boonpok, C. Viriyapong, Continuous Functions on Bigeneralized Topological Spaces, Int. J. Math. Anal. 5 (2011), 1165–1174.
  10. W. Dungthaisong, C. Boonpok, C. Viriyapong, Generalized Closed Sets in Bigeneralized Topological Spaces, Int. J. Math. Anal. 5 (2011), 1175–1184.
  11. A. Keskin, T. Noiri, Almost b-Continuous Functions, Chaos Solitons Fractals. 41 (2009), 72–81. https://doi.org/10.1016/j.chaos.2007.11.012.
  12. K. Laprom, C. Boonpok, C. Viriyapong, β(τ1, τ2)-Continuous Multifunctions on Bitopological Spaces, J. Math. 2020 (2020), 4020971. https://doi.org/10.1155/2020/4020971.
  13. S.N. Maheshwari, G.I. Chae, P.C. Jain, Almost Feebly Continuous Functions, Ulsan Inst. Tech. Rep. 13 (1982), 195–197.
  14. S. Marcus, Sur les Fonctions Quasicontinues au Sens de S. Kempisty, Colloq. Math. 8 (1961), 47–53.
  15. A.S. Mashhour, M.E. Abd El-Monsef, S.N. El-Deeb, On Precontinuous and Weak Precontinuous Mappings, Proc. Math. Phys. Soc. Egypt. 53 (1982), 47–53.
  16. B.M. Munshi, D.S. Bassan, Almost semi-continuous mappings, Math. Student, 49 (1981), 239–248.
  17. A.A. Nasef, T. Noiri, Some Weak Forms of Almost Continuity, Acta Math. Hungar. 74 (1997), 211–219.
  18. T. Noiri, Almost α-Continuous Functions, Kyungpook Math. J. 28 (1988), 71–77.
  19. V. Popa, On the Decomposition of the Quasi-Continuity in Topological Spaces (Romanian), Stud. Circ. Mat. 30 (1978), 31–35.
  20. M.K. Singal, A.R. Singal, Almost Continuous Mappings, Yokohama J. Math. 16 (1968), 63–73.
  21. C. Viriyapong, C. Boonpok, (Λ,sp)-Continuous Functions, WSEAS Trans. Math. 21 (2022), 380–385.
  22. C. Viriyapong, C. Boonpok, (τ1, τ2)α-Continuity for Multifunctions, J. Math. 2020 (2020), 6285763. https://doi.org/10.1155/2020/6285763.